Исследовать на равномерную сходимость функциональную последовательность $f_n(x) = x^{n-1}\cos x^n$ на множестве а) $x \in (0;1)$, б) $x \in [0;1-\varepsilon]$, где $\varepsilon \in (0;1)$ — фиксированное число.

Найдём предел функциональной последовательности:

$$f(x) = \lim_{n \to \infty} f_n(x) = 0, \quad x \in [0; 1).$$

Воспользуемся практическим критерием равномерной сходимости функциональной последовательности. Для этого нам нужно найти

$$\varepsilon_n = \sup_{x \in X} |f_n(x) - f(x)| = \sup_{x \in X} f_n(x),$$

где X=(0;1) в случае а) и X=[0;1-arepsilon] в случае б), и вычислить предел $\lim_{n o\infty} arepsilon_n.$

Чтобы найти точную верхнюю грань $\sup_{x \in X} f_n(x)$, построим график функции $f_n(x)$ на отрезке $x \in [0;1]$ для достаточно большого фиксированного числа n. Заметим, что при n>1

$$f_n(0) = 0$$
, $f_n(x) > 0$ при $x \in (0; 1]$.

Найдём точки локального экстремума функции $f_n(x)$ на отрезке $x \in [0;1]$. Для этого найдём нули производной:

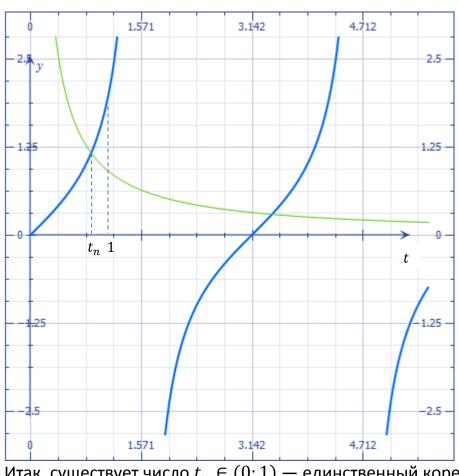
$$f'_n(x) = (n-1)x^{n-2}\cos x^n - x^{n-1}\sin x^n \cdot nx^{n-1} = 0,$$

откуда

$$\operatorname{tg} x^n = \frac{n-1}{n} \cdot \frac{1}{x^n}.$$

Сделаем замену $x^n=t$. Тогда $t\in[0;1]$ и

$$\operatorname{tg} t = \frac{n-1}{n} \cdot \frac{1}{t}.\tag{1}$$



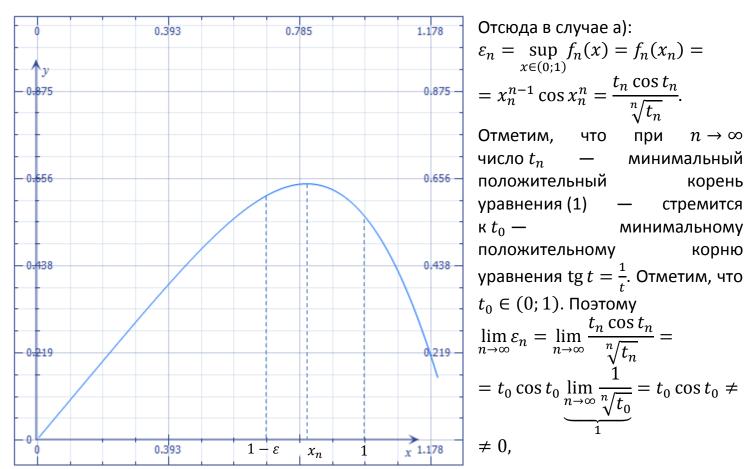
Построив графики функций $g_1(t)=\operatorname{tg} t$ (синяя кривая) и $g_2(t)=\frac{n-1}{n}\cdot\frac{1}{t}$ (зелёная кривая), мы убеждаемся в том, что уравнение (1) имеет единственный корень t_n на отрезке [0;1], причём этот корень лежит строго внутри отрезка, поскольку

$$g_1(1) = \operatorname{tg} 1 > 1 > \frac{n-1}{n} =$$

= $g_2(1)$,

и значит, в точке t=1 график тангенса $g_1(t)$ уже лежит выше графика гиперболы $g_2(t)$, т. е. абсцисса точки первого пересечения графиков t_n лежит левее 1.

Итак, существует число $t_n \in (0;1)$ — единственный корень уравнения (1) на отрезке [0;1]. Ему соответствует $x_n = \sqrt[n]{t_n} \in (0;1)$ — единственный нуль производной функции $f_n(x)$ на отрезке [0;1]. Тогда график функции $f_n(x)$ выглядит следующим образом:



откуда, согласно практическому критерию равномерной сходимости, следует отсутствие равномерной сходимости функциональной последовательности $f_n(x)$ на множестве $x \in (0;1)$.

Рассмотрим случай б). Требуется определить $\varepsilon_n = \sup_{x \in [0;1-\varepsilon]} f_n(x)$. Заметим, что число $x_n = \sqrt[n]{t_n}$ при $n \to \infty$ стремится к значению $\lim_{n \to \infty} \sqrt[n]{t_0} = 1$, поэтому при достаточно больших n имеем: $x_n > 1 - \varepsilon$. Тогда на отрезке $[0;1-\varepsilon]$ функция $f_n(x)$ является монотонно возрастающей, и

$$\varepsilon_n = \sup_{x \in [0; 1-\varepsilon]} f_n(x) = f_n(1-\varepsilon) = (1-\varepsilon)^{n-1} \cos(1-\varepsilon)^n.$$

Тогда

$$\lim_{n\to\infty}\varepsilon_n=\lim_{n\to\infty}(1-\varepsilon)^{n-1}\cos(1-\varepsilon)^n=0.$$

Согласно практическому критерию равномерной сходимости функциональная последовательность $f_n(x)$ равномерно сходится на множестве $x \in [0; 1-\varepsilon]$.

Ответ: а) сходится неравномерно, б) сходится равномерно.