А Н А Л И Т И Ч Е С К А Я Γ Е О М Е Т Р И Я линейная зависимость и независимость векторов

ШИМАНЧУК Дмитрий Викторович shymanchuk@mail.ru

Санкт-Петербургский государственный университет Факультет прикладной математики – процессов управления

Санкт-Петербург — 2013г.

Определения

Определение

Линейным пространством или линеалом, называют множество

 $\mathbf{L}=\mathbf{x},\mathbf{y},\mathbf{z},\ldots,\mathbf{s},\mathbf{p},\ldots$ элементов произвольной природы, называемых векторами, для которого:

- 1) задано правило, по которому любым двум элементам $\mathbf{x}, \mathbf{y} \in \mathbf{L}$ сопоставляется элемент $\mathbf{s} \in \mathbf{L}$, называемый их суммой и обозначаемый $\mathbf{s} = \mathbf{x} + \mathbf{y}$;
- 2) задано правило, по которому каждому элементу $\mathbf{x} \in \mathbf{L}$ и любому вещественному числу $\lambda \in \mathbb{R}$ сопоставляется элемент $\mathbf{p} \in \mathbf{L}$, называемый произведением \mathbf{x} на λ и обозначаемый $\mathbf{p} = \lambda \mathbf{x}$;
- 3) заданные правила при любых $\mathbf{x}, \mathbf{y}, \mathbf{z} \in \mathbf{L}$ и любых вещественных числах $\lambda, \mu \in \mathbb{R}$ подчинены аксиомам:
 - 1. x + y = y + x;
 - 2. (x + y) + z = x + (y + z);
 - 3. Существует нулевой вектор $\mathbf{x} + \mathbf{0} = \mathbf{x}$;
 - 4. Для каждого $\mathbf{x} \in \mathbf{L}$ существует $\mathbf{x}' \in \mathbf{L}$, что $\mathbf{x} + \mathbf{x}' = \mathbf{0}$;
 - 5. $\lambda(\mu \mathbf{x}) = (\lambda \mu) \mathbf{x};$
 - 6. $(\lambda + \mu)\mathbf{x} = \lambda\mathbf{x} + \mu\mathbf{x}$;
 - 7. $\lambda(\mathbf{x} + \mathbf{y}) = \lambda \mathbf{x} + \lambda \mathbf{y}$;

Линейная зависимость и независимость I

Пусть L — произвольный линеал, $\mathbf{a}_i \in L, i = 1, \ldots, n$ —его элементы (векторы).

Определение

Элемент (вектор) $\mathbf{p} = \sum_{i=1}^{n} \alpha_i \mathbf{a}_i$, где $\alpha_i, i = 1, ..., n$ — произвольные вещественные числа, называется линейной комбинацией элементов (векторов) ${\bf a}_1, {\bf a}_2, \ldots, {\bf a}_n.$

Определение

Элементы (векторы) $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ называются линейно зависимыми, если существуют такие вещественные числа $\lambda_1, \lambda_2, \dots, \lambda_n$, среди которых хотя бы одно отлично от нуля $(\lambda_1^2 + \lambda_2^2 + \ldots + \lambda_n^2 \neq 0)$, что $\sum_{i=1}^n \lambda_i \mathbf{a}_i = \mathbf{0}$.

Определение

Элементы $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ называются линейно независимыми, если равенство $\sum_{i=1}^{n} \lambda_i \mathbf{a}_i = \mathbf{0}$ возможно лишь в случае, когда вещественные числа $\lambda_1, \lambda_2, \dots, \lambda_n$ одновременно равны нулю.

Линейная зависимость и независимость II

Теорема 1.

Необходимым и достаточным условием линейной зависимости $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ является возможность разложения по крайней мере одного из этих элементов по остальным.

Теорема 2.

Если хотя бы один из элементов $\mathbf{a}_1, \mathbf{a}_2, \dots, \mathbf{a}_n$ нулевой, то эти элементы линейно зависимы.

Линейная зависимость и независимость III

Теорема 3.

Если среди n элементов какие-либо n-1 элементов линейно зависимы, то и все n элементов линейно зависимы.

Следствие. Если система элементов линейно независима, то и любое непустое подмножество этой системы также линейно независимо.

Геометрический смысл линейной зависимости и независимости векторов на плоскости ${\rm I}$

Теорема 1.

Необходимым и достаточным условием линейной зависимости двух векторов линейного векторного пространства ${f V}^2$ является их коллинеарность.

Следствие 1. Если векторы \overrightarrow{a} и \overrightarrow{b} неколлинеарны, то они линейно независимы. Следствие 2. Среди двух неколлинеарных векторов не может быть нулевого вектора.

Геометрический смысл линейной зависимости и независимости векторов на плоскости Π

Теорема 2.

Необходимым и достаточным условием линейной зависимости трёх векторов в линейном пространстве ${f V}^3$ является их компланарность.

Следствие 1. Если векторы \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} некомпланарны, то они линейно независимы в ${\bf V}^3$.

Следствие 2. Среди трёх некомпланарных векторов не может быть двух коллинеарных.

Следствие 3. Каковы бы ни были два неколлинеарных вектора \overrightarrow{a} , \overrightarrow{b} на плоскости, всякий другой вектор \overrightarrow{c} , компланарный с \overrightarrow{a} и \overrightarrow{b} , может быть разложен по векторам \overrightarrow{a} и \overrightarrow{b} в виде $\overrightarrow{c}=\alpha\overrightarrow{a}+\beta\overrightarrow{b}$

Геометрический смысл линейной зависимости и независимости векторов на плоскости III

Теорема 3.

Любые четыре вектора линейного пространства ${\bf V}^3$ линейно зависимы.

Следствие. Каковы бы ни были три некомпланарных вектора \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} пространства \mathbf{V}^3 , любой вектор \overrightarrow{d} пространства \mathbf{V}^3 может быть разложен по векторам \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} в виде $\overrightarrow{d} = \alpha \overrightarrow{a} + \beta \overrightarrow{b} + \gamma \overrightarrow{c}$.

Базис линейного пространства I

Определение

Упорядоченный набор линейно независимых элементов (векторов) $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$ ленеала \mathbf{L} называется *базисом линеала*, если для каждого элемента (вектора) $\mathbf{x} \in \mathbf{L}$ найдутся такие вещественные числа $x_i, i=1,\dots,n$, что

$$\mathbf{x} = \sum_{i=1}^{n} x_i \mathbf{e}_i$$

Определение

Это равенство называют разложением элемента (вектора) \mathbf{x} по базису $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n$.

Определение

Числа x_1, x_2, \ldots, x_n , фигурирующие в разложении элемента \mathbf{x} линеала \mathbf{L} по заданному базису $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n$, называются *координатами вектора* \mathbf{x} относительно рассматриваемого базиса.

Базис линейного пространства II

Теорема 1.

Всякий элемент линеала ${\bf L}$ может быть единственным образом разложен по базису ${\bf e}_1, {\bf e}_2, \ldots, {\bf e}_n$, тем самым его координаты относительно заданного базиса определяются однозначно.

Теорема 2.

При сложении элементов линеала ${\bf L}$ их координаты складываются, а при умножении элемента на вещественное число все его координаты умножаются на это число.

Базис линейного пространства III

Теорема 3.

Если каждый из n+1 элементов $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n$ линеала \mathbf{L} представим в виде линейной комбинации n линейно независимых элементов $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ того же линеала, т. е.

$$\mathbf{y}_j = \sum_{i=1}^n \lambda_{ij} \mathbf{x}_i, \quad j = 0, \dots, n,$$

то элементы $\mathbf{y}_0, \mathbf{y}_1, \dots, \mathbf{y}_n$ линейно зависимы.

Следствие. Любые n+1 элементов в пространстве \mathbb{R}^n линейно зависимы.

Размерность линейного пространства I

Определение

Линеал $\mathbf L$ называют конечномерным (n-мерным), если в нём имеется линейно независимая система, состоящая из n элементов, а всякая система содержащая более n элементов, является линейно зависимой.

Определение

Число n называют размерностью линеала ${\bf L}$ и обозначают символом $dim({\bf L})={\bf n}.$

Определение

Линеал ${\bf L}$ называется *бесконечномерным*, если для любого натурального числа N в нём найдётся линейно независимая система, состоящая из N элементов.

Размерность линейного пространства II

Теорема.

Для того чтобы линеал ${\bf L}$ был n-мерным, необходимо и достаточно, чтобы в нём существовал базис, состоящий из n элементов.

9. (аксиома размерности). Линейное пространство ${\bf L}$ конечномерно и его размерность равна n.

Изоморфизм линейных пространств I

Определение

Соответствие между элементами двух линеалов ${\bf L}$ и ${\bf L}'$ называется *взаимно* однозначным, если каждому элементу из ${\bf L}$ отвечает единственный элемент из ${\bf L}'$, причём каждый элемент из ${\bf L}'$ отвечает одному лишь элементу из ${\bf L}$.

Определение

Два элемента ${\bf L}$ и ${\bf L}'$ называются *изоморфными* (${\bf L}\approx {\bf L}'$), если между элементами этих линеалов можно установить взаимно однозначное соответствие $\varphi: {\bf x} \in {\bf L} \to \varphi({\bf x}) \in {\bf L}'$, что $\varphi(\lambda {\bf x}) = \lambda \varphi({\bf x}), \varphi({\bf x}+{\bf y}) = \varphi({\bf x}) + \varphi({\bf y})$, где ${\bf x}, {\bf y} \in {\bf L}, \lambda$ — любое вещественное число. Данное взаимно однозначное соответствие называют *линейным изоморфизмом*.

Изоморфизм линейных пространств II

Теорема 1.

Все линеалы одной и той же размерности изоморфны.

Следствие. Каждое n-мерное линейное пространство \mathbf{L}^n изоморфно координатному пространству \mathbb{R}^n .

Изоморфизм линейных пространств III

Теорема 2.

Изоморфные линеалы имеют одну и ту же размерность.

Следствие 1. Конечномерные линеалы разных размерностей неизоморфны.

Следствие 2. Бесконечномерный линеал не может быть изоморфен никакому конечномерному линеалу.