Глава 7. Мышечные ткани 285
Скелетная мышечная ткань 285
Сердечная мышечная ткань 300
Гладкая мышечная ткань 305
Немышечные сокращающиеся клетки 309
Препараты 311
Вопросы 314
Ответы и пояснения 320
Глава 8. Нейроанатомия 325
8.1. Нервная ткань 325
Источники 325
Морфогенез 327
Нейрон 330
Нейроглия 340
8.2. Периферическая нервная система 343
Нервные волокна 343
Нерв 345
Нервные окончания 348
Вегетативная нервная система 358
Препараты 362
Вопросы 367
Ответы и пояснения 370
8.3. Центральная нервная система 375
Спинной мозг 375
Головной мозг 384
Пороки развития 389
Препараты 391
Вопросы 394
Ответы и пояснения 397
8.4. Органы чувств 401
Зрение 401
Обоняние 408
Вкус 410
Слух и равновесие 412
Препараты 418
Вопросы 422
Ответы и пояснения 425
Глава 9. Эндокринная система 429
Основные понятия 429
Гипоталамо-гипофизарная система 434
Эпифиз 452
Щитовидная железа 453
Околощитовидные железы 462
Надпочечник 469
Препараты 484
Вопросы 488
Ответы и пояснения 489
Глава 10. Сердечно-сосудистая система 493
Сосуды 493
Сердце 504
Препараты 515
Вопросы 519
Ответы и пояснения 523
Глава 11. Иммунная защита 527
Основные понятия 527
Органы иммунной защиты 539
Препараты 546
Вопросы 549
Ответы и пояснения 553
Глава 12. Пищеварительная система 557
Источники и развитие 557
План строения пищеварительного тракта 566
Нервный аппарат 568
Энтероэндокринная система 569
Ротовая полость 576
Зубы 577
Пищевод 581
Желудок 582
Тонкий кишечник 589
Толстый кишечник 593
Железы 594
Препараты 604
Вопросы 623
Ответы и пояснения 627

7

Мышечные ткани

Мышечная ткань осуществляет двигательные функции организма. Во всех сократительных элементах мышечных тканей (поперечнополосатое скелетное мышечное волокно, кардиомиоциты, гладкомышечные клетки [ГМК]), а также в немышечных контрактильных клетках (миоэпителиальные клетки, миофибробласты и др.) функционирует актомиозиновый хемомеханический преобразователь. У части гистологических элементов мышечной ткани в СМ видны сократительные единицы - саркомеры. Это обстоятельство позволяет размичать два тила мышечных тканей. Один из них - поперечнополосатая (скелетная и сердечная) и второй - гладкая. Сократительную функцию скелетной мышечной ткани (произвольная мускулатура) контролирует нервная система (соматическая двигательная иннервация). Непроизвольные мышцы (сердечная и гладкая) имеют вегетативную двигательную иннервацию, а также развитую систему гуморального контроля их сократительной активности. Для ГМК характерна выраженная физиологическая и репаративная регенерация. В составе же скелетных мышечных волокон присутствуют стволовые клетки (клетки-сателлиты), поэтому скелетная мышечная ткань потенциально способна к регенерации. Кардиомиоциты находятся в фазе G_{0} клеточного цикла, а стволовые клетки в сердечной мышечной ткани отсутствуют; по этой причине регенерация кардиомиоцитов невозможна.

I. CKEЛETHAЯ МЫШЕЧНАЯ TKАНЬ

У человека более 600 скелетных мышц (около 40% массы тела). Скелетная мышечная ткань обеспечивает осознанные и осознаваемые произвольные движения тела и его частей. Основные гистологические элементы: скелетные мышечные волокна (функция сокращения), клетки-сателлиты (камбиальный резерв).
А. Развитие скелетных мышц. Источник развития гистологических элементов скелетной мышечной ткани - миотомы, откуда выселяются и мигрируют в места закладки конкретных мышц самые ранние клетки миогенного клеточного типа - клетки миотомов. Миогенный клеточный тип в эмбриогенезе последовательно складывается из следующих гистологических элементов: клетки миотома (миграция) \rightarrow миобласты митотические (пролиферация) \rightarrow миобласты постмитотические (слияние) \rightarrow мышечные трубочки (синтез сократительных белков, формирование саркомеров) \rightarrow мышечные волокна (функция сокращения). В области закладки мышц уже присутствуют клетки мезенхимы - источник соединительнотканных структур мышцы, сюда прорастают кровеносные капилляры, а позднее (при образовании мышечных трубочек) - аксоны двигательных и чувствительных нейронов соматического отдела нервной системы.

1. Клетки миотомов при их выселении из сомитов уже детерминированы в направлении образования миогенных элементов. Дефекты миграции клеток миотома, а также сбои при взаимодействии разных клеточных элементов в ходе миогенеза приводят к аномальному развитию скелетных мышц.

2. Миобласты

a. Митотические миобласты (G_{1}-миобласты) последовательно проходят ряд завершающихся митозами клеточных циклов (пролиферативные митозы). На этой стадии часть G_{1}-миобластов обособляется в виде клеток-сателлитов.
б. Постмитотические миобласты (G_{0}-миобласты) - клетки, необратимо вышедшие из клеточного цикла (результат квантального митоза) и уже начавшие синтез сократительных белков. G_{0}-миобласты сливаются и образуют симпласты - миотубы.
3. Мышечная трубочка (миотуба) - цепочка слившихся миобластов, в которой ядра занимают центральное положение. В мышечных трубочках происходит терминальная миогенная дифференцировка: синтез контрактильных белков, сборка сократительных структур - миофибрилл (появляется поперечная исчерченность). Перемещение ядер симлласта на периферию завершает формирование поперечнополосатого мышечного волокна.
4. Мышечное волокно - дефинитивная форма скелетномышечного миогенеза, выполняющая функцию мышечного сокращения (см. І Б). Разные типы мышечных волокон рассмотрены в I Д, их фенотипы - в I Е.
5. Клетки-сателлиты - обособившиеся в ходе миогенеза G_{1}-миобласты, расположенные между базальной мембраной и плазмолеммой мышечных волокон. Ядра этих клеток составляют 10% суммарного количества ядер скелетного мышечного волокна. Клеткисателлиты - камбиальный резерв мышечной ткани скелетного типа. Они сохраняют способность к миогенной дифференцировке (миобласты \rightarrow миотубы \rightarrow мышечные волокна) в течение всей жизни, что обеспечивает увеличение массы мышечных волокон. Клетки-сателлиты также участвуют в репаративной регенерации скелетной мышечной ткани (см. I Ж).
6. Маркёры миогенного клеточного типа.
a. Миогенные факторы (в т.ч. миогенин и MyoD) - регуляторные факторы миогенеза, экспрессируются только в гистологических элементах скелетной мышцы на разных стадиях миогенеза. Миогенин и MyoD - факторы транскрипции специфичных для миогенного клеточного типа генов.
б. Десмин - мышечноспецифический белок класса промежуточных филаментов цитоскелета. Десмин найден в гистологических элементах всех мышечных тканей. В скелетномышечном миогенезе десмин начинает экспрессироваться в цитоплазме миобластов, а с началом миофибриллогенеза десминовые нити вплетаются в Z-диски или их аналоги в ГМК (плотные пятна). При различных миопатиях происходит накопление десмина в саркоплазме.
в. Контрактильные белки актомиозинового хемомеханического преобразователя миозины, актины, тропонины, тропомиозины, а также вспомогательные белки тонких (актиновых), толстых (миозиновых) нитей миофибрилл и Z-дисков.
г. Креатинфосфокиназа (КФК)
д. Миоглобин

Б. Скелетное мышечное волокно

1. Общая характеристика. Структурно-функциональная единица скелетной мышцы симпласт - скелетное мышечное волокно (рис. 7-1, 7-16), имеет форму протяжённого цилиндра с заострёнными концами. Этот цилиндр достигает в длину 40 мм при диаметре до 0,1 мм. Термин оболочка волокна (сарколемма) относят к двум структурам: плазмолемма симпласта и его базальная мембрана. Между плазмолеммой и базальной мембраной расположены овальной формы ядра клеток-сателлитов. Палочковидной формы ядра мышечного волокна лежат в миоплазме (саркоплазма) под плазмолеммой. В саркоплазме симпласта расположены контрактильный аппарат миофибриллы, депо Ca^{2+} - саркоплазматическая сеть, энергетические станции митохондрии, включения (гранулы гликогена). От поверхности мышечного волокна к расширенным участкам саркоплазматического ретикулума направляются трубковидные впячивания сарколеммы - поперечные трубочки (Т-трубочки). Рыхлая волокнистая

Рис. 7-1. Скелетная мышца состоит из поперечнополосатых мышечных волокон. Значительный объём волокон занимают миофибриллы. Расположение светлых и тёмных дисков в параллельных друт другу миофибриллах совпадает, что приводит к появлению поперечной исчерченности. Структурная единица миофибрилл - саркомер, сформированный из толстых и тонких нитей [из Bloom W, Fawsett DW, 1968]

соединительная ткань между отдельными мышечными волокнами (эндомизий) содержит кровеносные и лимфатические сосуды, нервные волокна. Группы мышечных волокон и окружающая их в виде чехла волокнистая соединительная ткань (перимизий) формируют пучки. Их совокупность образует мышцу, плотный соединительнотканный чехол которой именуют эпимизий.
2. Миофибриллы. Поперечная исчерченность скелетного мышечного волокна определяется регулярным чередованием в миофибриллах различно преломляющих поляризованный свет участков (дисков) - изотропных и анизотропных: светлые (Isotropic, I-диски) и тёмные (Anisotropic, А-диски) диски. Разное светопреломление дисков определяется упорядоченным расположением по длине саркомера тонких и толстых нитей; толстые нити находятся только в тёмных дисках, светлые диски не содержат толстых нитей. Каждый светлый диск пересекает \mathbf{Z}-линия. Участок миофибриллы между соседними Z. линиями определяют как саркомер.
3. Саркомер (рис. 7-1, 7-8) - структурно-функциональная единица миофибриллы, расположенная между соседними Z-линиями. Саркомер образуют расположенные параллельно друг другу тонкие (актиновые) и толстые (миозиновые) нити. I-диск содержит только тонкие нити. В середине I-диска проходит \mathbf{Z}-линия. Один конец тонкой нити прикреплён к Z-линии, а другой конец направлен к середине саркомера. Толстые нити занимают центральную часть саркомера - А-диск. Тонкие нити частично входят между толстыми. Содержащий только толстые нити участок саркомера - Н-зона. В середине H -зоны проходит M -линия. I-диск входит в состав двух саркомеров. Следовательно, каждый саркомер содержит один А-диск (тёмный) и две половины I-диска (светлого), формула саркомера $-3 / 2 \mathrm{~A}+\mathrm{I}+3 / 2 \mathrm{~A}$.
a. Толстая нить. Каждая миозиновая нить состоит из $300-400$ молекул миозина и С-белка. Миозин - гексамер (две тяжёлые и четыре лёгкие цепи). Тяжёлые цепи две спирально закрученные полипептидные нити, несущие на своих концах глобулярные головки. В области головок с тяжёлыми цепями ассоциированы лёгкие цепи. Каждую миозиновую нить связывает с Z-линией гигантский белок титин.
(1) Миозин (рис. 7-2). В молекуле миозина различают тяжёлый и лёгкий меромнозин. Тяжёлый меромиозин содержит субфрагменты (S): \mathbf{S}_{1} содержит глобулярные головки миозина, \mathbf{S}_{2} - прилежащую к головкам часть фибриллярного хвоста молекулы миозина. S_{2} эластичен (эластический компонент \mathbf{S}_{2}), что допускает отхождение S_{1} на расстояние до 55 нм. Концевую часть хвостовой нити миозина длиной 100 нм образует лёгкий меромиозин. Миозин имеет два шарнирных участка, позволяющих молекуле изменять конформацию. Один шарнирный участок находится в области соединения тяжёлого и лёгкого меромиозинов, другой - в области шейки молекулы миозина ($S_{1}-S_{2}$ соединение). Половина молекул миозина обращена головками к одному концу нити, а вторая половина - к другому (рис. 7-3). Лёгкий меромиозин лежит в толще толстой нити, тогда как тяжёлый меромиозин (благодаря шарнирным участкам) выступает на её поверхность.

Рис. 7-2. Молекула миозина. Лёгкий меромиозин обеспечивает агрегацию молекул миозина, тяжёлый меромиозин имеет связывающие актин участки и обладает активностью АТФазы [по West JB, 1990]

Лёгкий меромиозин

Тяжёлый меромиозин

Рис. 7-3. Толстая нить. Молекулы миозина способны к самосборке и формируют веретенообразный агрегат диаметром 15 нм и длиной 1,5 мкм. Фибриллярные хвосты молекул образуют стержень толстой нити, головки миозина расположены спиралями и выступают над поверхностью толстой нити [из Ham AW, Cormack DH, 1979]

Рис. 7-4. Тонкая нить - две спирально скрученные нити F-актина. B канавках спиральной цепочки залегает двойная спираль тропомиозина, вдоль которой располагаются молекулы тропонина [из Junqueira LC, Carneiro J, 1991]
(2) Титин - наибольших размеров полипептид (из известных) с $\mathrm{M}_{\mathrm{r}} 3000$ кД наподобие пружнны связывает концы толстых нитей с Z-линией. Другой гигантский белок - небулин ($_{r} 800$ кД) - ассоциирует тонкие и толстые нити.
(3) С-белок стабилизирует структуру миозиновых нитей. Влияя на агрегацию молекул миозина, обеспечивает одинаковый диаметр и стандартную длину толстых нитей.
(4) Миомезин (М-белок), КФК - белки, ассоциированные с толстыми нитями в середине тёмного диска. КФК способствует быстрому восстановлению АТФ при сокращении. Миомезин выполняет организующую роль при сборке толстых нитей.
6. Тонкая нить состоит из актина, тропомиозина и тропонинов (рис. 7-4).
(1) Актин. Молекулы глобулярного актина (G-актин) полимеризуются и образуют фибриллярный актин (F -актин). В состав тонкой нити входят две спирально закрученные цепочки F -актина.
(2) Тропомиозин состоит из двух полипептидных цепей и имеет конфигурацию двойной спирали. Полярные молекулы тропомнозина длиной 40 нм укладываются конец в конец в желобке между двумя спирально закрученными цепочками F -актина.
(3) Тропонин (Tn) - комплекс, образованный тремя глобулярными $\mathrm{CE}: \mathrm{TnT}, \mathrm{TnI}$, $\mathrm{TnC} . \mathrm{TnT}$ имеет участки для связи с тропомиозином. $\mathrm{TnC}-\mathrm{Ca}^{2+}-$ связывающий белок. TnI препятствует взаимодействию актина с миозином. Тропониновый комплекс прикреплён к молекулам тропомиозина с интервалами 40 нм.
(4) α-Актинин, десмин и виментин - белки, ассоциированные с тонкими нитями; они входят в состав Z-линии, в которую вплетён один конец тонкой нити; второй конец расположен между толстыми нитями и ассоциирован с ними при помощи небулина.
4. Саркоплазматическая сеть. Каждая миофибрилла окружена регулярно повторяющимися по её длине (точнее, по длине саркомера) элементами саркоплазматического ретикулума - анастомозирующими мембранными трубочками, заканчивающимися терминальными цистернами (рис. 7-5). На границе между дисками А и I две терминальные дистерны соседних повторов контактируют с Т-трубочками (триады). Саркоплазматический ретикулум - модифицированная гладкая эндоплазматическая сеть, выполняющая функцию депо кальция. $\mathbf{C a}^{2+}$-транспортирующие АТФазы саркоплазматического ретикулума откачивают ионы кальция из саркоплазмы. Са ${ }^{2+}$-связывающий белок кальсеквестрин находится внутри саркоплазматической сети. Кальциевые каналы, образованные рецепторами рианодина, высвобождают Ca^{2+} из депо в саркоплазму.
5. Т-трубочки. Сарколемма мышечного волокна образует множество узких впячиваний поперечных трубочек (Т-трубочки). Они проникают внутрь мышечного волокна и, залегая между двумя терминальными цистернами саркоплазматического ретикулума, вместе с последними формируют триады. В триадах происходит передача возбуждения в виде потенциала действия плазматической мембраны мышечного волокна на мембрану терминальных цистерн - сопряжение возбуждения и сокращения: дигидропиридиновые рецепторы T-трубочек регистрируют изменения мембранного потенциала ($\Delta \mathrm{V}$) и активируют рианодиновые рецепторы саркоплазматической сети (Ca^{2+}-канал).
В. Иннервация. Двигательная и чувствительная соматическая иннервация скелетных мышц (мышечных волокон) осуществляется соответственно α - и γ-мотонейронами передних рогов спинного мозга и двигательных ядер черепных нервов и псевдоуниполярными чувствительными нейронами спинномозговых узлов и чувствительных ядер черепных нервов. Вегетативная иннервация гистологических элементов скелетных мышц не обнаружена, но ГМК стенки кровеносных сосудов мышц имеют симпатическую адренергическую иннервацию.

1. Двигательная иннервация. В скелетных мышцах соответственно характеру иннервации принято различать два типа мышечных волокон: экстрафузальные и интрафузальные. Каждое экстрафузальное мышечное волокно имеет прямую двигательную иннервацию - нервно-мышечные синапсы, образованные терминальными ветвлениями аксонов α-мотонейронов и специализированными участками плазмолеммы мышечного волокна (концевая пластинка, постсинаптическая мембрана). Интрафузальные мышечные волокна (см. главу 8.2 III A 8 а) образуют нервно-мышечные синапсы с эфферентными волокнами γ-мотонейронов. Мышечные волокна входят в состав нейромоторных (двигательных) единиц и обеспечивают сократительную функцию мышц.
a. Нейромоторная единица включает один мотонейрон и группу иннервируемых им экстрафузальных мышечных волокон. Количество и размеры двигательных единиц в различных мышцах значительно варьируют. Поскольку при сокращении фазные мышечные волокна подчиняются закону всё или ничего, то сила, развиваемая мышцей, зависит от количества активируемых (т.е. участвующих в сокращении мышечных волокон) двигательных единиц. Каждая нейромоторная единица образована только быстросокращающимися или только медленносокращающимися мышечными волокнами (см. І Д $\mathbf{1}$ б).
б. Полинейронная иннервация. Формирование нейромоторных единиц происходит в постнатальном периоде, а до рождения мышечные волокна имеют полинейронную иннервацию, когда каждое мышечное волокно иннервируется несколькими мотонейронами. Аналогичная ситуация возникает при денервации (например, при повреждении

Рис. 7-5. Фрагмент скелетного мыпечного волокна. Цистерны саркоплазматического ретикулума окружают каждую миофибриллу. Т-трубочки подходят к миофибриллам на уровне границ между тёмными и светлыми дисками и вместе с терминальными цистернами саркоплазматического ретикулума образуют триады. Между миофибриллами залегают митохондрии [из Kopf-Maier P. Merker H-J, 1989]

нерва) с последующей реиннервацией мышечных волокон. Понятно, что в этих ситуациях страдает эффективность сократительной функции мышцы.

2. Чувствительная иннервация

a. Интрафузальные мышечные волокна вместе с чувствительными нервными окончаниями формируют мышечные веретёна - рецепторы скелетной мышцы (см. главу 8.2 III A 8 a).
б. Сухожильный орган Го́льджси (глава 8.2 III А 8 б)
Г. Сокращение мышцы происходит при поступлении по аксонам двигательных нейронов к нервно-мышечным синапсам волны возбуждения в виде нервных импульсов (потенциалы действия нервных волокон). Это непрямое сокращение (опосредованное нервно-мышечной синаптической передачей возбуждения). Возможно и прямое сокращение мышцы. Под ним понимают сокращение групп мышечных волокон, происходящее при возбуждении любого звена последовательности событий после секреции нейромедиатора из терминалей аксона в нервно-мышечном синапсе (см. главу 8.2 III Б 1). Прямое сокращение мышцы (например, мышечные подёргивания, или фибрилляции) - всегда патология.

1. Нервно-мышечный синапс и деполяризация постсинаптической мембраны. Возбуждение мотонейрона приводит к секреции ацетилхолина из терминалей аксона в синаптическую щель. Ацетилхолин связывается с его рецепторами (никотиновые холинорецепторы мышечного типа, н-холинорецепторы), вмонтированными в постсинаптическую мембрану мышечного волокна (плазмолемма). Результат взаимодействия деполяризация мембраны мышечного волокна, т.к. при взаимодействии нейромедиатора с холинорецептором открывается ионный канал в составе рецептора. Взаимодействие рецептора и ацетилхолина кратковременно, т.к. присутствующая в синапсе ацетилхолинэстераза гидролизует нейромедиатор. Нарушения в любом звене нервно-мышечной передачи приводят к искажениям мышечного сокращения.
a. Ботулинический и столбнячный нейротоксины, $\boldsymbol{\beta}$ - и $\boldsymbol{\gamma}$-бунгаротоксины блокируют секрецию ацетилхолина.
б. Карбахолин усиливает секрецию ацетилхолина.
в. Миорелаксанты периферического действия (кураре и курареподобные препараты) широко применяются в анестезиологии. Тубокурарин препятствует деполяризующему действию ацетилхолина. Дитилин приводит к миопаралитическому эффекту, вызывая стойкую деполяризацию постсинаптической мембраны.
г. Денервация. При двигательной денервации происходит значительное увеличение чувствительности мышечных волокон к эффектам ацетилхолина вследствие увеличенного синтеза рецепторов ацетилхолина и их встранвания в плазмолемму по всей поверхности мышечного волокна.
д. Фосфорорганические соединения (ФОС), прозерин, физостигмин, галантамин инактивируют ацетилхолинэстеразу.
е. Миастения тяжёлая псевдопаралитическая (myasthenia gravis). При этом заболевании циркулирующие в крови АТ к холинорецепторам угнетают их функцию (страдает нервно-мышечная передача, развивается мышечная слабость).
ж. α-Бунгаротоксин блокирует холинорецепторы.
2. Плазмолемма и потенциал действия. Локальная деполяризация постсинаптической мембраны приводит к генерации потенциала действия, быстро распространяющегося по всей плазмолемме мышечного волокна (включая Т-трубочки).
a. Электромиография - важный диагностический метод - позволяет регистрировать характеристики потенциалов действия.
3. Ионные каналы, обеспечивающие развитие потенциала действия, рассмотрены в главе 2 I B 16 (2).
в. Миотония. Уменьшение Cl^{-}-проводимости плазмолеммы ведёт к электрической нестабильности мембраны мышечных волокон и развитию миотонии (например, болезни То́мсена).
4. Триады и передача сигнала на саркоплазматическую сеть. Волна деполяризации по Т-трубочкам проникает до триад. В области триад мембрана Т-трубочек в составе потенциалзависимого кальциевого канала содержит рецепторы дигидропиридина. Деполяризация мембраны Т-трубочек вызывает в структуре рецепторов дигидропиридина конформационные изменения, передаюциеся на рецепторы рианодина терминальных цистерн саркоплазматического ретикулума.
Злокачественная гипертермия при наркозе (особенно при использовании тиопентала и галотана) - редкое осложнение (смертность до 70%) при хирургическом вмешательстве. Температура тела быстро поднимается до $43{ }^{\circ} \mathrm{C}$ и выше, происходит генерализованный рабдомиолиз. В части случаев найдена мутация гена рианодинового рецептора скелетномышечного типа.
5. Саркоплазматический ретикулум и выброс $\mathbf{C a}^{2+}$. Активация рецепторов рианодина (Ca^{2+}-канал) приводит к открытию Ca^{2+}-каналов, Ca^{2+} из Ca^{2+}-депо (саркоплазматическая сеть) поступает в саркоплазму; концентрация Ca^{2+} в саркоплазме достигает значений, достаточных для связывания этого двухвалентного катиона с тропонином C (TnC) тонких нитей.
6. Связывание Ca^{2+} тонкими нитями. В покое взаимодействие тонких и толстых нитей невозможно, т.к. миозинсвязывающие участки молекул актина заблокированы тропомиозином. При высокой концентрации Ca^{2+} эти ионы связываются с TnC и вызывают конформационные изменения тропомиозина, приводящие к разблокированию миозинсвязывающих участков (рис. 7-6).
7. Взаимодействие тонких и толстых нитей. В результате разблокирования миозинсвязывающих участков молекул актина головки миозина присоединяются к тонкой нити и изменяют свою конформацию, создавая тянущее усилие - тонкие нити начинают скользить между толстыми.

Рис. 7-6. Са ${ }^{2+}$ зависимый механизм регуляции взаимодействия актина с миознном. В покое миозинсвязывающие участки тонкой нити заняты тропомиозином. При сокращении ионы Ca^{2+} связываются с TnC , а тропомиозин открывает миозннсвязывающие участки. Головки миозина присоединяются к тонкой нити и вызывают её смещение относительно толстой нити [по von Ganong WF (1979) из Junqueira LC, Carneiro J, 1991]

Модель скользящих нитей была предложена Хью Ха́ксли. Скольжение тонких нитей относительно толстых обеспечивает чередование рабочих циклов. Каждый цикл имеет несколько стадий (рис. 7-7).
(1) Головка миозина, несущая продукты гидролиза АТФ (АДФ + P_{i}), прикрепляется к миозинсвязывающим участкам актиновой нити.
(2) Головка миозина изменяет конформацию; за счёт шарнирного участка в области щейки миозина происходит гребковое движение, продвигающее тонкую нить к центру саркомера.
(3) Головка миозина связывается с молекулой АТФ, что приводит к отделению миозина от актина. Последуюший гидролиз АТФ восстанавливает конформацию молекулы миозина, и она оказывается готовой вступить в новый цикл.
7. Укорочение саркомера и сокращение мышечного волокна. Головка миозина совершает около пяти циклов в секунду. Когда одни головки миозина толстой нити производят тянущее усилие, другие в это время свободны и готовы вступить в очередной цикл. Следующие друг за другом гребковые движения стягивают тонкие нити к центру саркомера. Скользящие тонкие нити тянут за собой Z-линии, вызывая сокращение саркомера (рис. 7-8). Поскольку в процесс сокращения практически одномоментно вовлечены все саркомеры мышечного волокна, происходит его укорочение.
8. Расслабление. Са ${ }^{2+}$-АТФаза саркоплазматического ретикулума закачивает Ca^{2+} из саркоплазмы в цистерны ретикулума, где Ca^{2+} связывается с кальсеквестрином. При низкой саркоплазматической концентрации Ca^{2+} тропомиозин закрывает миозинсвязывающие участки и препятствует их взаимодействию с миозином. После смерти, когда содержание АТФ в мышечных волокнах снижается вследствие прекращения её синтеза, головки миозина оказываются устойчиво прикреплёнными к тонкой нити. Это состояние трупного окоченения (rigor mortis) продолжается, пока не наступит аутолиз, после чего мышцы можно растянуть.
9. Энергетические потребности. Мышечное сокращение требует значительных энергетических затрат. Основной источник энергии - гидролиз макроэрга АТФ.
a. Митохондрии мышечного волокна имеют удлинённую форму и располагаются в миоплазме параллельно миофибриллам. В митохондриях происходят процессы цикла трикарбоновых кислот и окислительного фосфорилирования, что приводит к генерации АТФ.
6. Гликоген запасается в саркоплазме в виде включений. Анаэробный гликолиз сопряжён с синтезом АТФ.
в. Креатинфосфокиназа, связанная в области $М$-линии, катализирует перенос фосфата от фосфокреатина на АДФ с образованием креатина и АТФ.
r. Миоглобин. Этот пигментный белок, как и Hb , обратимо связывает кислород. Запасы кислорода необходимы для синтеза АТФ при длительной непрерывной работе мышцы.
Д. Классификации типов мышечных волокон и скелетных мышц. Скелетные мышцы и образующие их мышечные волокна различаются по множеству параметров: скорости сокращения, утомляемости, диаметру, цвету и т.д. Например, цвет мышцы может быть обусловлен рядом причин: количеством митохондрий, содержанием миоглобина, плотностью кровеносных капилляров. Традиционно выделяют красные и белые, а также медленные и быстрые мышцы и волокна. Другими словами, существует множество классификаций мышц и мышечных волокон. Каждая мышца - гетерогенная популяция разных типов мышечных волокон. Тип мышцы определяют, исходя из преобладания в ней конкретного типа мышечных волокон.

1. Критерии классификации. На практике важны следующие классифицирущие критерии типов мышечных волокон: характер сокращения (а), скорость сокращения (б), тип окислительного обмена (в).

1993903089990008000050

5

Рис. 7-7. Цикл скольжения тонких нитей относительно толстых. Тяжёлый меромиозин лежит на поверхности толстой нити (1). Благодаря шарнирному участку между тяжёлым и лёгким меромиозином, несущая АДФ и P_{i} головка миозина прикрепляется к актину (2), происходит поворот головки миозина с одновременным растягиванием эластического компонента S_{2} (3). Из головки освобождаются АДФ и $\mathrm{P}_{\mathrm{i}}^{2}$, а последующая ретракция эластического компонента S_{2} вызывает тянущее усилие (4). Затем к головке миозина присоединяется новая молекула АТФ, что приводит к отделению головки миозина от молекулы актина. Гидролиз АТФ возвращает молекулу миозина в исходное положение (5) [из West JB, 1990]

Рис. 7-8. Саркомер расслабленного (А) и сокращённого (Б) мышечного волокна. При сокращении тонкие нити движутся к центру саркомера, их свободные концы сходятся у М-линии. Вследствие этого уменьшается длина I-дисков и H-зоны. Длина А-диска не изменяется [по Schultz E, Leblond C из $\operatorname{Ham} A W$, Cormack DH, 1979]
a. Фазные и тонические. Экстрафузальные мышечные волокна подразделяют на фазные, осуществляющие энергичные сокращения, и тонические, специализирующиеся на поддержании статического напряжения, или тонуса. Произвольная мускулатура человека практически полностью состоит из фазных мышечных волокон, генерирующих потенциалы действия. В ответ на нервную стимуляцию они отвечают быстрым сокращением. Тонические мышечные волокна встречаются лишь в наружных ушных и наружных глазных мышцах. Тонические мышечные волокна имеют более низкий потенциал покоя (от -50 до -70 mB). Степень деполяризации мембраны зависит от частоты стимуляции, поэтому лишь повторные нервные стимулы вызывают сокращение тонических волокон. Тонические мышечные волокна имеют полинейронную иннервацию.
б. Быстрые и медленные. Скорость сокращения мышечного волокна определяется типом миозина. Изоформа миозина, обеспечивающая высокую скорость сокращения, быстрый миозин (в частности, характерна высокая активность АТФазы), изоформа миозина с меньшей скоростью сокращения - медленный миозин (в частнос$т и$, характерна меньшая активность АТФазы). Следовательно, активность АТФазы миозина отражает скоростные характеристики скелетной мышцы. Мышечные волокна, имеющие высокую активность АТФазы, - быстросокращающиеся волокна (быстрые волокна), для медленносокращающихся волокон (медленные волокна) характерна низкая АТФазная активность.
в. Окислительные и гликолитические. Мышечные волокна используют окислительный либо гликолитический путь образования АТФ. В ходе аэробного окисления из одной молекулы глюкозы образуются 38 молекул АТФ и конечные продукты метаболизма - вода и углекислый газ (этим типом обмена характеризуются красные волокна). Пंри анаэробном типе метаболизма из одной молекулы глюкозы образуются 2 молекулы АТФ, а также молочная кислота (этим типом обмена характеризуются белье волокна).
(1) Окислительные, или красные, мышечные волокна небольшого диаметра, окружены массой капилляров, содержат много миоглобина. Их многочисленные митохондрии имеют высокой уровень активности окислительных ферментов (например, СДГ).
(2) Гликолитические, или белые, мышечные волокна имеют бо́льший диаметр, в саркоплазме содержится значительное количество гликогена, митохондрии немногочисленны. Для них характерны низкая активность окислительных ферментов и высокая активность гликолитических ферментов. В белых мышечных волокнах молочная кислота выводится в межклеточное пространство, тогда как в красных мышечных волокнах молочная кислота служит субстратом для дальнейшего окисления, в результате которого образуется ещё 36 молекул АТФ. Плотность капиллярной сети вокруг мышечных волокон, количество митохондрий, а также активность окислительных и гликолитических ферментов коррелируют со степенью утомления волокна. Белые гликолитические волокна имеют высокую скорость сокращения и относятся к быстроутомляемым. Среди красных волокон по скорости сокращения и утомляемости выделено два подтипа: быстрые неутомляемые и медленные неутомляемые волокна.
2. Диагностика типов мышечных волокон проводится при гистохимическом выявлении активности АТФазы миозина и СДГ (рис. 7-9).
a. АТФаза миозина. Различают два типа мышечных волокон.
(1) Быстрые (высокая активность АТФазы).
(2) Медлениые (низкая активность АТФазы).
6. Сукцинатдегидрогеназа. Различают три типа мышечных волокон.
(1) Белые (гликолитические волокна, имеющие низкую активность фермента).
(2) Красные (окислительные волокна с высокой активностью СДГ).
(3) Промежуточные (окислительно-гликолитические волокна, имеющие умеренную активность СДГ).
3. Сводная классификация мышечных волокон (табл. 7-1, рис. 7-9). На практике результаты типирования мышечных волокон комбинируют. Различают три типа мышечных волокон: быстросокращающиеся красные, быстросокращающиеся белые и медленносокращающиеся промежуточные. В зависимости от преобладания в мышцах конкретного типа мышечных волокон скелетные мышцы относят к «красным» и «белым» аибо «быстрым» и «медленным". Таким образом, каждая мышца уникальна по спектру входящих в её состав типов мышечных волокон. Этот спектр генетически детерминирован (отсюда практика типирования мышечных волокон при отборе спортсменов-бегунов - спринтеров и стайеров).
E. Контроль фенотипа мышечных волокон. Множество факторов (интактная иннервация, уровень физической активности, гормоны) поддерживает унаследованный спектр мышечных волокон, уникальный для каждой мышцы.

1. Трофическое влияние нерва. После повреждения нерва скелетная мышца подвергается гипотрофии (уменьшение объёма мышечных волокон, разрастание соединительной ткани, увеличение чувствительности к ацетилхолину). Регенерация нерва восстанавливает нормальное состояние мышц. Известно также, что все мышечные волокна одной и той же нейромоторной единицы принадлежат к одному типу (см. I Д). Эти и многие другие наблюдения и эксперименты заставили заключить, что мотонейроны оказывают на иннервируемые ими мышечные волокна нейротрофический эффект. Факторы реализации нейротрофического эффекта не выделены; возможно, речь идёт о специальных гормоноподобных веществах.
2. Сократительная активность. Аналогичное денервации и также обратимое действие оказывает иммобилизация мышц.
3. Эффекты гормонов. Ряд гормонов (в т.ч. анаболические стероиды) вызывает гипертрофию мышц.

Б

Рис 7-9. Типы волокон скелетной мышцы. На серийных срезах: А - активность АТФазы миозина: светлые волокна - медленносокращающиеся; тёмные волокна - быстросокращающиеся. Б активность СДГ: светлые волокна - белые (гликолитические); тёмные волокна - красные (окислительные); промежуточные волокна (окислительно-гликолитические). 1 - быстросокращающееся белое волокно (высокая активность АТФазы миозина, низкая активность СДГ); 2 - быстросокращающееся красное волокно (высокая активность АТФазы миозина, высокая активность СДГ); 3 - быстросокращающееся красное волокно (высокая активность АТФазы миозина, умеренная активность СДГ); 4 медленносокращающееся промежуточное волокно (низкая активность АТФазы миозина, умеренная активность СДГ) [из Muller W, 1975]

Таблица 7-1. Типы мышечных волокон и их свойства

Сипы мышечных волокои	Миозин	Митохондрии	Содержание миоглобина	Утомляемость	Содержание гликогена
быстрые красные	быстрый	много	высокое	медленноутом- ляемые быстроутом- ляемые медленноутом- ляемые	высокое
быстрые белые	быстрый	немного	низкое	низое	
медленные промежуточные	медленный	много	высокое		

Ж. Регенерация и трансплантация мышц

1. Физиологическая регенерация. В скелетной мышце постоянно происходит физиологическая регенерация - обновление мышечных волокон. При обновлении мышечных волокон клетки-сателлиты вступают в циклы пролиферации с последующей дифференцировкой в миобласты и их включением в состав предсуществующих мышечных волокон. Дистрофин и мышечные дистрофии. Существует ряд наследственных заболеваний, при которых нарушено обновление скелетной мышечной ткани (мышечные дистрофии Дюшенна, Беккера и другие). Это Х-сцепленный дефект (чаще делеции) гена дистрофина. Заболевание встречается у мальчиков с популяционной частотой 1:7000. Нормально дистрофин локализован в сарколемме (рис. 7-10). При дистрофиях резко уменьшен или отсутствует синтез этого и ряда других белков дистрофинового комплекса, развиваются дегенеративные изменения мышечных волокон, они замещаются жировыми клетками и волокнистой соединительной тканью.
2. Репаративная регенерация. Восстановление мышечных волокон возможно благодаря наличию клеток-сателлитов - камбиальных элементов скелетной мышечной ткани. При гибели симпласта клетки-сателлиты активируются, происходят пролиферация миобластов и выстраивание их в цепи. Миобласты сливаются, образуя мышечные трубочки с характерным для них центральным расположением ядер. Синтез сократительных белков начинается в миобластах, а в мышечных трубочках происходят сборка миофибрилл и образование саркомеров. Миграция ядер на периферию завершает образование мышечных волокон. Таким образом, в ходе репаративной регенерации происходит повторение событий эмбрионального миогенеза.

3. Трансплантация

a. Пересадка мышц. При пересадке мышц используют лоскут из широчайшей мышцы спины. При остеомнелите, ишемической контрактуре и травмах мышечный лоскут,

Рис. 7-10. Мембранный цитоскелет поперечнополосатого мышечного волокна. Дистрофин цитоплазматический белок, ассоциированный с плазмолеммой. Белок оказывает стабилизирующее действие на дистрогликаны, входящие в состав дистрофинового комплекса. Дистрогликаны связывают ламинин и обеспечивают адгезию мышечного волокна к межклеточному матриксу [из Gumbiner BM, 1993]

извлечённый из ложа вместе с собственными сосудами и нервом, трансплантируют в место дефекта мышечной ткани.
6. Перенос камбиальных клеток. При наследственных мышечных дистрофиях применяют введение в дефектные по гену дистрофина мышцы нормальные по этому признаку G_{0}-миобласты. При таком подходе рассчитывают на постепенное обновление дефектных мышечных волокон нормальными.

II. CEPДЕЧНАЯ МЫШЕЧНАЯ ТКАНЬ

Поперечнополосатая мышечная ткань сердечного типа входит в состав мышечной стенкн сердца (миокард). Основной гистологический элемент - кардиомиоцит. Кардиомиоциты присутствуют также в проксимальной части аорты и верхней полой вены.
А. Кардиомиогенез. Миобласты происходят из клеток спланхнической мезодермы, окружающей эндокардиальную трубку (глава 10 Б 1). После ряда митотических делений G_{1}-миобласты начинают синтез сократительных и вспомогательных белков и через стадию G_{0} миобластов дифференцируются в кардиомиоциты, приобретая вытянутую форму; в саркоплазме начинается сборка миофибрилл. В отличие от поперечнополосатой мышечной ткани скелетного типа, в кардиомиогенезе не происходит обособления камбиального резерва, а все кардиомиоциты необратимо находятся в фазе G_{0} клеточного цикла.

Специфический фактор транскрипции (ген CATF1/SMBP2, 600502, 11q13.2-q13.4) экспрессируется только в развивающемся и сформировавшемся миокарде.
Б. Кардиомиоциты расположены между элементами рыхлой волокнистой соединительной ткани, содержащей многочисленные кровеносные капилляры бассейна венечных сосудов и терминальные ветвления двигательных аксонов нервных клеток вегетативного отдела нервной системы. Каждый миоцит имеет сарколемму (базальная мембрана + плазмолемма). Различают рабочие, атипичные и секреторные кардиомиоциты.

1. Рабочие кардиомиоциты (рис. 7-11) - морфофункциональные единицы сердечной мышечной ткани - имеют цилиндрическую ветвящуюся форму диаметром около 15 мкм. Клетки содержат миофибриллы и ассоциированные с ними цистерны и трубочки саркоплазматического ретикулума (депо $\mathbf{C a}^{2+}$), центрально расположенные одно или два ядра. Рабочие кардиомиоциты при помощи межклеточных контактов (вставочные диски) объединены в так называемые сердечные мышечные волокна - функциональный синцитий (совокупность кардиомиоцитов в пределах каждой камеры сердца).
a. Сократительный аппарат. Организация миофибрилл и саркомеров в кардиомиоцитах такая же, как и в скелетном мышечном волокне (см. І Б 1, 2). Одинаков и механизм взаимодействия тонких и толстых нитей при сокращении (см. I Г 5, 6, 7).
б. Саркоплазматическая сеть. Выброс Ca^{2+} из саркоплазматического ретикулума регулируется через рецепторы рианодина (см. также главу 2 III A 3 б (3) (а)). Изменения мембранного потенциала открывают потенциалзависимые Ca^{2+}-каналы, в кардиомиоцитах незначительно повышается концентрация Ca^{2+}. Этот Ca^{2+} активирует рецепторы рианодина, и Ca^{2+} выходит в цитозоль (кальций-индуцированная мобилизация Ca^{2+}).
в. Т-трубочки в кардиомиоцитах, в отличие от скелетных мышечных волокон, проходят на уровне Z-линий. В связи с этим T-трубочка контактирует только с одной терминальной цистерной. В результате вместо триад скелетного мышечного волокна формируются диады.
г. Митохондрии расположены параллельными рядами между миофибриллами. Их более плотные скопления наблюдают на уровне I-дисков и ядер.

Рис. 7-11. Рабочий кардиомиоцит - удлинённой формы клетка. Ядро расположено центрально, вблизи ядра находятся комплекс Гольджи и гранулы гликогена. Между миофибриллами лежат многочисленные митохондрии. Вставочные диски (на врезке) служат для скрепления кардиомиоцитов и синхронизации их сокращения [из Hees H, Sinowatz F(1992) и Kopf-Maier P, Merker H-J (1989)]
д. Вставочные диски. На концах контактирующих кардиомиоцитов имеются интердигитации (пальцевидные выпячивания и углубления). Вырост одной клетки плотно входит в углубление другой. На конце такого выступа (поперечный участок вставочного диска) сконцентрированы контакты двух типов: десмосомы и промежуточные. На боковой поверхности выступа (продольный участок вставочного диска) имеется множество щелевых контактов (n ехия, нексус).
(1) Десмосомы обеспечивают механическое сцепление, препятствующее расхождению кардиомиоцитов.
(2) Промежуточные контакты необходимы для прикрепления тонких актиновых нитей ближайшего саркомера к сарколемме кардиомиоцита.
(3) Щелевые контакты - межклеточные ионные каналы, позволяющие возбуждению перескакивать от кардиомиоцита к кардиомиоциту. Это обстоятельство наряду с проводящей системой сердца - позволяет синхронизировать одновременное сокращение множества кардиомиоцитов в составе функционального синцития.
е. Предсердные и желудочковые миоциты - разные популяции рабочих кардиомиоцитов. В предсердных кардиомиоцитах слабее развита система Т-трубочек, но в зоне вставочных дисков значительно больше щелевых контактов. Желудочковые кардиомиоциты крупнее, они имеют хорошо развитую систему Т-трубочек. В состав сократительного аппарата миоцитов предсердий и желудочков входят разные изоформы миозина, актина и других контрактильных белков.
2. Атипичные кардиомиоциты. Этот устаревший термин относится к миоцитам, формирующим проводящую систему сердца (глава 10 Б 2 б (2)). Среди них различают водители ритма и проводящие миоциты.
a. Водители ритма (пейсмейкерные клетки, пейсмейкеры; рис. 7-12) - совокупность специализированных кардиомиоцитов в виде тонких волокон, окружённых рыхлой соединительной тканью. По сравнению с рабочими кардиомноцитами они имеют меньшие размеры. В саркоплазме содержится сравнительно мало гликогена и небольшое количество миофибрилл, лежащих в основном по периферии клеток. Эти клетки имеют богатую васкуляризацию и двигательную вегетативную иннервацию. Так, в синуснопредсердном узле доля соединительнотканных элементов (включая кровеносные капилляры) в $1,5-3$ раза, а нервных элементов (нейроны и двигательные нервные окончания) в 2,5-5 раз выше, чем в рабочем миокарде правого предсердия. Главное свойство водителей ритма - спонтанная деполяризация плазматической мембраны. При достижении критического значения возникает потенциал действия, распространяющийся по волокнам проводящей системы сердца и достигающий рабочих кардиомиоцитов. Главный водитель ритма - клетки синусно-предсердного узла - генерирует ритм 60-90 импульсов в минуту. Нормально активность других водителей ритма подавлена.
(1) Спонтанная генерация импульсов потенциально присуща не только водителям ритма, но и всем атипичным, а также рабочим кардиомиоцитам. Так, in vitro все кардиомиоциты способны к спонтанному сокращению.
(2) В проводящей системе сердца существует иерархия водителей ритма: чем ближе к рабочим миоцитам, тем реже спонтанный ритм.
б. Проводящие кардиомиоциты - специализированные клетки, выполняющие функцию проведения возбуждения от водителей ритма. Эти клетки образуют длинные волокна.
(1) Пучок Ги́ca. Кардиомиоциты этого пучка проводят возбуждение от водителей ритма к волокнам Пуркинье́, содержат относительно длинные миофибриллы, имеющие спиральный ход; мелкие митохондрии и небольшое количество гликогена. Проводящие кардиомиоциты пучка Гйса входят также в состав синусно-предсердного и предсердно-желудочкового узлов.
(2) Волокна Пуркинье́. Проводящие кардиомиоциты волокон Пуркинье́ - самые крупные клетки миокарда. В них содержатся редкая неупорядоченная сеть миофибрилл, многочисленные мелкие митохондрии, большое количество гликогена. Кардиомиоциты волокон Пуркинье́ не имеют Т-трубочек и не образуют вставочных дисков. Они связаны при помощи десмосом и щелевых контактов. Последние занимают значительную площадь контактирующих клеток, что обеспечивает высокую скорость проведения импульса по волокнам Пуркинье́.
3. Секреторные кардиомиоциты. В части кардиомиоцитов предсердий (особенно правого) у полюсов ядер располагаются хорошо выраженный комплекс Го́льджи и секреторные гранулы, содержащие атриопептин - гормон, регулирующий АД (глава 10 Б 2 б (3)).
В. Иннервация. На деятельность сердца - сложной авторегуляторной и регулируемой системы - оказывает влияние множество факторов, в т.ч. двигательная вегетативная

Рис. 7-12. Атипичные кардиомиоциты. А - водитель ритма синусно-предсердного узла; Б - проводящий кардиомноцит пучка Гúca [из Hees H, Sinowatz F, 1992]

иннервация - парасимпатическая и симпатическая. Парасимпатическая иннервация осуществляется терминальными варикозными окончаниями аксонов блуждающего нерва, а симпатическая - окончаниями аксонов адренергических нейронов шейного верхнего, шейного среднего и звёздчатого (шейно-грудного) ганглиев. В контексте представления о сердце как о сложной авторегуляторной системе чувствительная иннервация сердца (как вееетативная, так и соматическая) должна рассматриваться как часть системы регуляции кровотока.

1. Двигательная вегетативная иннервация. Эффекты парасимпатической и симпатической иннервации реализуют соответственно мускариновые холинергические и адренергические рецепторы плазмолеммы разных клеток сердца (кардиомиоциты рабочие и особенно атипические, внутрисердечные нейроны собственного нервного аппарата). Существует множество фармакологических препаратов, оказывающих непосредственное действие на названные рецепторы. Так, норадреналин, адреналин и другие адренергические препараты в зависимости от эффекта на α - и β-адренорецепторы подразделяют на активирующие (адреномиметики) и блокирующие (адреноблокаторы) агенты. м-Холинорецепторы также имеют аналогичные классы препаратов (холиномиметики и холиноблокаторы).
a. Активация симпатических нервов увеличивает частоту спонтанной деполяризации мембран водителей ритма, облегчает проведение импульса в волокнах Пуркинье́ и увеличивает частоту и силу сокращения типичных кардиомиоцитов.
2. Парасимпатические влияния, наоборот, уменьшают частоту генерации импульсов пейсмейкерами, снижают скорость проведения импульса в волокнах Пуркинье́ и уменьшают частоту сокращения рабочих кардиомноцитов.

2. Чувствительная иннервация

a. Спинальная. Периферические отростки чувствительных нейронов спинномозговых узлов образуют свободные и инкапсулированные нервные окончания.
б. Специализированные сенсорные структуры сердечно-сосудистой системы рассмотрены в главе $\mathbf{1 0}$.
3. Внутрисердечные вегетативные нейроны (двигательные и чувствительные) могут формировать местные нейрорегуляторные механизмы.
4. МИФ-клетки. Малая интенсивно флюоресцирующая клетка - разновидность нейронов, найдена практически во всех вегетативных ганглиях. Это небольшая (диаметр 10-20 мкм) и безотростчатая (или с небольшим числом отростков) клетка, в цитоплазме содержит множество крупных гранулярных пузырьков диаметром $50-200$ нм с катехоламинами. Гранулярная эндоплазматическая сеть развита слабо и не образует скоплений, подобных тельцам Ни́ссля.
Г. Регенерация. При ишемической болезни сердца (ИБС), атеросклерозе коронарных сосудов, сердечной недостаточности разной этиологии (в т.ч. при артериальной гипертензии, инфаркте миокарда) наблюдаются патологические изменения кардиомиоцитов, включая их гибель.

1. Peпаративная регенерация кардиомиоцитов невозможна, т.к. они находятся в фазе G_{0} клеточного цикла, а аналогичные скелетномышечным клеткам-сателлитам G_{1} миобласты в миокарде отсутствуют. По этой причине на месте погибиих кардиомиоцитов образуется соединительнотканный рубец со всеми вытекающими отсюда неблагоприятными последствиями (сердечная недостаточность) для проводящей и сократительной функций миокарда, а также для состояния кровотока.
2. Сердечная недостаточность - нарушение способности сердца обеспечивать кровоснабжение органов в соответствии с их метаболическими потребностями.
a. Причины сердечной недостаточности - снижение сократительной способности, увеличение посленагрузки, изменения преднагрузки.

Снижение сократительной способности

(a) Инфаркт миокарда - некроз участка сердечной мышцы с потерей его способности к сокращению. Замещение поражённой части стенки желудочков соединительной тканью приводит к снижению функциональных свойств миокарда. При поражении значительной части миокарда развивается сердечная недостаточность.
(б) Врождённые и приобретённые пороки сердца приводят к перегрузке полостей сердца давлением или объёмом с развитием сердечной недостаточности.
(в) Артериальная гипертензия. Многие больные гипертонической болезнью или симптоматическими гипертензиями страдают недостаточностью кровообращения. Снижение сократительной способности миокарда характерно для стойкой тяжёлой гипертензии, быстро приводящей к развитию сердечной недостаточности.
(г) Кардиомиопатии токсические (алкоголь, кобальт, катехоламины, доксорубицин), инфекционные, при т.н. коллагеновых болезнях, рестриктивные (амилоидоз и саркондоз, идиопатические).
б. Компенсаторные механизмы при сердечной недостаточности. Фено́мены, вытекающие из закона Фра́нка-Ста́рлинга, в т.ч. гипертрофия миокарда, дилатация левого желудочка, периферическая вазоконстрикция вследствие выброса катехоламинов, активация системы ренин-ангиотензин-[альдостерон] и вазопрессина, перепрограммирование синтеза миозинов в кардиомиоцитах, увеличение секреции атриопептина, компенсаторные механизмы, поддерживающие положительный инотропный

эффект. Однако рано или поздно миокард теряет способность обеспечивать нормальный сердечный выброс.
(1) Гипертрофия кардиомиоцитов в виде увеличения массы клеток (в т.ч. их полиплоидизация) - компенсаторный механизм, прнспосабливающий сердце к функционированию в патологических ситуациях.
(2) Перепрограммирование синтеза миозинов в кардиомиоцитах происходит при увеличении ОПСС для поддержания сердечного выброса, а также под влиянием повышенного содержания в крови T_{3} и T_{4} при тиреотоксикозах. Имеется несколько генов для лёгких и тяжёлых цепей сердечного миозина, различающихся по активности АТФазы, а значит, по длительности рабочего цикла (см. І Г 6) и развиваемому напряжению. Перепрограммирование миозинов (как и других сократительных белков) обеспечивает сердечный выброс на приемлемом уровне до тех пор, пока не будут исчерпаны возможности этого приспособительного механизма. При исчерпании этих возможностей развивается сердечная недостаточность - левосторонняя (гипертрофия левого желудочка с последующей его дилатацией и дистрофическими изменениями), правосторонняя (застой в малом круге кровообращения).
(3) Ренин-ангиотензин-[альдостерон], вазопрессин - мощная система вазоконстрикции.
(4) Периферическая вазоконстрииция вследствие выброса катехоламинов.
(5) Атриопептин - гормон, реализующий вазодилатацию.

III. ГААФКАЯ МЫШЕЧНАЯ ТКАНЬ

Основной гистологический элемент гладкомышечной ткани - гладкомышечная клетка (ГМК), способная к гипертрофии и регенерации, а также к синтезу и секреции молекул межклеточного матрикса. ГМК в составе гладких мышц формируют мышечную стенку полых и трубчатых органов, контролируя их моторику и величину просвета. Регуляцию сократительной активности ГМК осуществляют двигательная вегетативная иннервация и множество гуморальных факторов. В ГМК отсутствует поперечная исчерченность, т.к. миофиламенты тонкие (актиновые) и толстые (миозиновые) нити - не образуют миофибрилл.
А. Миогенез. Камбиальные клетки эмбриона и плода (спланхномезодерма, мезенхима, нейроэктодерма) в местах закладки гладкой мускулатуры дифференцируются в миобласты, а затем - в зрелые ГМК, приобретающие вытянутую форму; их сократительные и вспомогательные белки формируют миофиламенты. ГМК в составе гладких мышц находятся в фазе G_{1} клеточного цикла и способны к пролиферации.
Б. Гладкомышечная клетка. Морфофункциональная единица гладкой мышечной ткани ГМК. Заострёнными концами ГМК вклиниваются между соседними клетками и образуют мышечные пучки, в свою очередь формирующие слои гладкой мускулатуры. В волокнистой соединительной ткани между миоцитами и мышечными пучками проходят нервы, кровеносные и лимфатические сосуды. Встречаются и единичные ГМК, например, в субэндотелиальном слое сосудов.

1. Общая характеристика. Их форма - вытянутая веретеновидная, часто отростчатая (рис. 7-13). Длина ГМК от 20 мкм до 1 мм (например, ГМК матки при беременности). Овальное ядро локализовано центрально. В саркоплазме у полюсов ядра расположены хорошо выраженный комплекс Го́льджи, многочисленные митохондрии, свободные рибосомы, саркоплазматический ретикулум. Миофиламенты ориентированы вдоль продольной оси клетки. Базальная мембрана, окружающая ГМК, содержит протеогликаны, коллаген типа III и V. Компоненты базальной мембраны и эластин

Рис. 7-13. Гладкомышечные клетки. Центральное положение в ГМК занимает крупное ядро. У полюсов ядра находятся митохондрии, эндоплазматический ретикулум и комплекс Гольджи. Актиновые миофиламенты, ориентированные вдоль продольной оси клетки, прикреплены к плотным тельцам. Миоциты формируют между собой щелевые контакты [из Lentz TL, 1971]

межклеточного вещества гладких мышц синтезируются как самими ГМК, так и фибробластами соединительной ткани.
2. Сократительный аппарат. Стабильные актиновые нити ориентированы преимущественно по продольной оси ГМК и прикрепляются к плотным тельцам. Сборку толстых (миозиновых) нитей и взаимодействие актиновых и миозиновых нитей активируют ионы кальция, поступающие из депо Ca^{2+}. Непременные компоненты сократительного аппарата кальмодулин (Ca^{2+}-связывающий белок), киназа и фосфатаза лёгкой цепи гладкомышечного миозина.
3. Депо $\mathbf{C a}^{2+}$ - совокупность длинных узких трубочек (саркоплазматический ретикулум) и находящихся под сарколеммой множества мелких пузырьков (кавеолы). Са ${ }^{2+}$. АТФаза постоянно откачивает Ca^{2+} из цитоплазмы ГМК в элементы саркоплазматического ретикулума. Через Ca^{2+}-каналы кальциевых депо ионы Ca^{2+} поступают в цитоплазму ГМК. Активация Ca^{2+}-каналов происходит при изменении мембранного потенциала и при помощи рецепторов рианодина и инозитолтрифосфата.
4. Плотные тельца (рис. 7-14). В саркоплазме и на внутренней стороне плазмолеммы находятся плотные тельца - аналог Z-линий поперечнополосатой мышечной ткани. Плотные тельца содержат -актинин и служат для прикрепления тонких (актиновых) нитей.
5. Щелевые контакты в мышечных пучках связывают соседние ГМК. Эти нексусы необходимы для проведения возбуждения (ионный ток), запускающего сокращение ГМК.

Рис. 7-14. Сократительный аппарат гладкомышечной клетки. Плотные тельца содержат α-актинин, это аналоги Z-линий поперечнополосатой мышцы. В саркоплазме они связаны сетью промежуточных филаментов, в местах их прикрепления к плазматической мембране присутствует винкулин. Актиновые нити прикреплены к плотным тельцам, миозиновые миофиламенты формируются при сокращении [из West JB, 1990]
В. Механизм сокращения ГМК. В ГМК, как и в других мышечных тканях, работает актомиозиновый хемомеханический преобразователь, но АТФазная активность миозина в гладкомышечной ткани приблизительно на порядок ниже активности АТФазы миозина поперечнополосатой мышцы. Медленное образование и разрушение актин-миозиновых мостиков требуют меньшего количества АТФ. Отсюда, а также из факта лабильности миозиновых нитей (их постоянная сборка и разборка при сокращении и расслаблении соответственно) вытекает важное обстоятельство - в ГМК медленно развивается и длительно поддерживается сокращение. При поступлении сигнала к ГМК (через рецепторы плазмолеммы и щелевые контакты) сокращение ГМК запускают ионы кальция, поступающие из кальциевых депо. Рецептор Ca^{2+} - кальмодулин. Таким образом, увеличение содержания Ca^{2+} в миоплазме - ключевое событие для сокращения ГМК.

1. Регуляция $\mathbf{C a}^{2+}$ в миоплазме ГМК - процесс, начинающийся с изменения мембранного потенциала и/или связывания рецепторов плазмолеммы с их лигандами (регистрация сигнала) и заканчивающийся изменением режима работы Ca^{2+}-каналов в депо кальция (открытое или закрытое состояние Са ${ }^{2+}$-каналов).
a. Изменення мембранного потенциала ГМК происходят при передаче возбуждения от клетки к клетке через щелевые контакты, а также при взаимодействии агонистов (нейромедиаторы, гормоны) с их рецепторами. Изменения мембранного потенциала открывают потенциалзависимые Ca^{2+}-каналы плазмолеммы, и в цитоплазме ГМК повышается концентрация Ca^{2+}. Этот Ca^{2+} активирует рецепторы рианодина кальциевых депо.
2. Рецепторы плазмолеммы ГМК многочисленны (см. III В). При взаимодействии агонистов с их рецепторами (например, норадреналин, гистамин) на внутренней

поверхности плазмолеммы активируется фосфолипаза C и образуется второй посредник - инозитолтрифосфат. Инозитолтрифосфат активирует рецепторы инозитолтрифосфата кальциевых депо.
в. Активация рецепторов рианодина и инозитолтрифосфата в кальциевых депо открывает их Ca^{2+}-каналы, и поступающий в миоплазму Ca^{2+} связывается с кальмодулином.

2. Сокращение и расслабление ГМК

a. Сокращение. При связывании Ca^{2+} с кальмодулином (аналог тропонина C поперечнополосатой мышечной ткани) происходит фосфорилирование лёгкой цепи миозина при помощи киназы лёгких цепей - сигнал для сборки миозиновых нитей и их последующего взаимодействия с тонкими нитями. Фосфорилированный (активный) миозин прикрепляется к актину, головки миозина изменяют свою конформацию, и совершается одно гребковое движение, т.е. втягивание актиновых мнофиламентов между миозиновыми. В результате гидролиза АТФ разрушаются актин-миозиновые связи, головки миозина восстанавливают свою конформацию и готовы к образованию новых поперечных мостиков. Продолжающаяся стимуляция ГМК поддерживает формирование новых миозиновых миофиламентов и вызывает дальнейшее сокращение клетки. Таким образом, сила и продолжительность сокращения ГМК определяется концентрацией свободного Ca^{2+}, окружающего миофиламенты.
б. Расслабление. При уменьшении содержания Ca^{2+} в миоплазме (постоянное откачивание Ca^{2+} в депо кальция) происходит дефосфорилирование лёгкой цепи миозина при помощи фосфатазы лёгких цепей миозина. Дефосфорилированный миозин теряет сродство к актину, что предотвращает образование поперечных мостиков. Расслабление ГМК заканчивается разборкой миозиновых нитей.
Г. Иннервация. Симпатические (адренергические) и отчасти парасимпатические (холинергические) нервные волокна иннервируют ГМК. Нейромедиаторы диффундируют из варикозных терминальных расширений нервных волокон в межклеточное пространство. Последующее взаимодействие нейромедиаторов с их рецепторами в плазмолемме вызывает сокращение либо расслабление ГМК. Существенно, что в составе многих гладких мышц, как правило, иннервированы (точнее, находятся рядом с варикозными терминалями аксонов) далеко не все ГМК. Возбуждение ГМК, не имеющих иннервации, происходит двояко: в меньшей степени - при медленной диффузии нейромедиаторов, в бо́льшей степени - посредством щелевых контактов между ГМК.
Д. Гуморальная регуляция. В мембрану ГМК встроены рецепторы ацетилхолина, гистамина, атриопептина, ангиотензина, адренорецепторы и множество других. Агонисты, связываясь со своими рецепторами в мембране ГМК, вызывают сокращение или расслабление ГМК.

1. Сокращение ГМК. Агонист (адреналин, норадреналин, ангиотензин, вазопрессин) через свой рецептор активирует G-белок (G_{p}), который в свою очередь активирует фосфолипазу С. Фосфолипаза С катализирует образование инозитолтрифосфата. Инозитолтрифосфат стимулирует высвобождение Ca^{2+} из кальциевых депо. Повышение концентрации Ca^{2+} в саркоплазме вызывает сокращение ГМК.
2. Расслабление ГМК. Агонист (атриопептин, брадикинин, гистамин, VIP) связывается с рецептором и активирует G-белок (G_{s}), который в свою очередь активирует аденилатциклазу. Аденилатциклаза катализирует образование цАМФ. цАМФ усиливает работу кальциевого насоса, закачивающего Ca^{2+} в депо кальция. В саркоплазме снижается концентрация Ca^{2+}, и ГМК расслабляется.
ГМК разных органов различно реагируют (сокращением либо расслаблением) на одни и те же лиганды. Это обстоятельство объясняется тем, что существуют разные подтипы конкретных рецепторов с характерным распределением в разных органах.
a. Гистамин действует на ГМК через рецепторы двух типов: H_{1} и H_{2}.
(1) Бронхиальная астма. Выброшенный из тучных клеток при их дегрануляции гистамин взаимодействует с H_{1}-гистаминовыми рецепторами ГМК стенки бронхов и бронхиол, что приводит к их сокращению и сужению просвета бронхиального дерева - бронхоспазм.
(2) Анафилактический шок. Выделяющийся в ответ на аллерген из базофилов гистамин активирует рецепторы типа H_{1} в ГМК артериол, это вызывает их расслабление, что сопровождается резким падением АД (колла́пс).
3. Норадреналин, выделяющийся из симпатических нервных волокон, взаимодействует с ГМК через адренорецепторы двух типов: α и β.
(1) Вазоконстрикция. Норадреналин взаимодействует с α-адренорецепторами ГМК-тенки артериол, что приводит к сокращению ГМК, вазоконстрикции и повышению АД.
(2) Перистальтика кишечника. Адреналин и норадреналин подавляют перистальтику кишечника, вызывая расслабление ГМК через α-адренорецепторы.
Е. Типы миоцитов. В основе классификации ГМК находятся различия в их происхождении, функциональных и биохимических свойствах.
4. Висцеральные ГМК происходят из мезенхимных клеток спланхнической мезодермы и присутствуют в стенке полых органов пищеварительной, дыхательной, выделительной и половой систем. Многочисленные щелевые контакты компенсируют сравнительно бедную иннервацию висцеральных ГМК, обеспечивая вовлечение всех ГМК в процесс сокращения. Сокращение ГМК медленное, волнообразное. Промежуточные филаменты образованы десмином и виментином.
5. ГМК кровеносных сосудов развиваются из мезенхимы кровяных островков. Сокращение ГМК сосудистой стенки опосредуют иннервация и гуморальные факторы. Промежуточные филаменты содержат как десмин, так и виментин.
6. ГМК радужной оболочки имеют нейроэктодермальное происхождение. Они формируют мышцы, расширяющие и суживающие зрачок. Мышцы получают вегетативную иннервацию. Двигательные нервные окончания подходят к каждой ГМК. Мышца, расширяющая зрачок, получает симпатическую иннервацию из пещеристого сплетения, волокна которого транзитом проходят через ресничный ганглий. Мышца, суживающая зрачок, иннервирована постганглионарными парасимпатическими нейронами ресничного ганглия. На этих нейронах оканчиваются преганглионарные парасимпатические волокна, проходящие в составе глазодвигательного нерва.
7. По функциональным свойствам различают тонические и фазные ГМК. Агонист в тонических ГМК вызывает постепенную деполяризацию мембраны (ГМК пищеварительного тракта). Фазные ГMK (vas deferens) генерируют потенциал действия и имеют относительно быстрые скоростные характеристики.
Ж. Регенерация. Вероятно, среди зрелых ГМК присутствуют недифференцированные предшественники, способные к пролиферации и дифференцировке в дефинитивные ГМК. Более того, дефинитивные ГМК потенциально способны к пролиферации. Новые ГМК возникают при репаративной и физиологической регенерации. Так, при беременности в миометрии происходит не только гипертрофия ГМК, но и значительное увеличение их общего количества.

IV. НЕМЫШЕЧНЫЕ СОКРАЩАЮЩИЕСЯ КЛЕТКИ

А. Миоэпителиальные клетки имеют эктодермальный генез и экспрессируют белки, характерные и для эктодермального эпителия (цитокератины 5, 14, 17), и для ГМК (гладкомышечные актин, α-актинин, миозин). Слюнные, слёзные, потовые, молочные железы содержат миоэпителиальные клетки. Они расположены вокруг секреторных отделов и

выводных протоков, прикрепляясь при помощи полудесмосом к базальной мембране. От тела клетки отходят отростки, охватывающие эпителиальные клетки желёз (рис. 7-15). Стабильные актиновые миофиламенты, прикреплённые к плотным тельцам, и нестабильные миозиновые, формирующиеся в процессе сокращения, - сократительный аппарат миоэпителиальных клеток. Сходное строение актомиозинового хемомеханического преобразователя в миоэпителиальных клетках и ГМК указывает на идентичный механизм сокращения этих клеток. Сокращаясь, миоэпителиальные клетки способствуют продвижению секрета из концевых отделов по выводным протокам желёз. Ацетилхолин из холинергических нервных волокон стимулирует сокращение миоэпителиальных клеток слёзных желёз, окситоцин - лактирующих молочных желёз.
Б. Миофибробласты проявляют свойства фибробластов и ГМК. При заживлении раны часть фибробластов начинает синтезировать гладкомышечные актины, мнозины. Дифференцирующиеся миофибробласты способствуют сближению раневых поверхностей. Миофибробласты также встречаются при фиброматозах, фиброзах лёгких, печени, почек.
В. Движение клеток. Способность клеток к движению наблюдается уже в раннем эмбриогенезе (гаструляция, направленная миграция клеток в места закладки будущих органов). Во взрослом организме часть клеток утрачивает подвижность, формируя клеточные пласты, сети, ансамбли (эпителиальные клетки, нейроны, кардиомиоциты), другие клетки должны активно перемещаться для выполнения своих функций (лейкоциты, камбиальные клетки при регенерации, сперматозоиды). Перемещение клеток осуществляется при помощи жгутика и/или вследствие амебоидных движений.

1. Движение клетки при помощи жгутика. Жгутик содержит аксонему - мотор с тубулин-динеиновым хемомеханическим преобразователем. Подвижность сперматозоидов обеспечивает аксонема, расположенная в хвостовой нити.
2. Амебоидное движение. Подвижность различных клеток (например, нейтрофилов, фибробластов, макрофагов) обеспечивает актомиозиновый хемомеханический преобразователь, в том числе циклы полимеризации и деполимеризации актина. Немышечные формы актина и миозина создают тянущее усилие, обеспечивающее миграцию клеток. Само перемещение клеток включает адгезию мигрирующих клеток к субстрату (межклеточному матриксу), образование цитоплазматических выростов (псевдоподий) по ходу движения и ретракцию заднего края клетки.
a. Адгезия. Амебоидное движение невозможно без адгезии клетки к субстрату. Молекулы точечной адгезии (интегрины) обеспечивают прикрепление клетки к молекулам межклеточного матрикса.

Рис. 7-15. Миоэпителиальная клетка. Корзинчатой формы клетка окружает секреторные отделы и выводные протоки желёз. Клетка спэсобна к сокращению, обеспечивает выведение секрета из концевого отдела [по Zimmermann $K W$ из Bloom W, Fawcett DW, 1969]
(1) Клетки нервного гребня имеют несколько интегриновых рецепторов к различным молекулам межклеточного матрикса. In vitro AT к CE β_{2} молекулы интегрина блокируют прикрепление клеток к фибронектину, ламинину, коллагенам.
(2) Миграция нейтрофилов в зону воспаления начинается с адгезии к эндотелию. Интегрины $\left(\alpha_{4} \beta_{7}\right)$ в мембране нейтрофилов взаимодействуют с молекулами адгезии гликокаликса эндотелия, и нейтрофилы проникают между эндотелиальными клетками (хоминг). Адгезия нейтрофилов к витронектину и фибронектину обеспечивает движение клеток через соединительную ткань к месту воспаления.
б. Образование псевдоподий. Стимуляция клетки вызывает немедленную полимеризацию актина - ключевой момент для образования псевдоподии. Актин формирует тонкую сеть из коротких филаментов, соединённых при помощи актин-связывающих белков (филамин, фимбрин, α-актинин, профилин). Различные классы молекул влияют на архитектонику и динамику актина (например, актин-связывающие белки, вторые посредники).
в. Ретракция. Вслед за образованием псевдоподии совершается ретракция заднего края клетки. Развитие сократительной реакции начинается со сборки биполярных миозиновых нитей. Образующиеся короткие толстые нити миозина взаимодействуют с актиновыми филаментами, вызывая скольжение нитей относительно друг друга. Актомиозиновый преобразователь развивает силу, разрывающую адгезионные контакты и приводящую к ретракции заднего края клетки. Формирование и разрушение адгезионных контактов, полимеризация и деполимеризация актина, образование псевдоподий и ретракция - следующие друг за другом события амебоидного перемещения клетки.

ПРЕПАРАТЫ

А. Скелетная мышечная ткань (рис. 7-16). Предлагается срез языка. Мышечные волокна, организованные в отдельные пучки, проходят в трёх взаимно перпендикулярных плоскостях. В продольном сечении мышечные волокна имеют цилиндрическую форму, а чередование тёмных и светлых дисков приводит к появлению хорошо выраженной поперечной исчерченности. Ядра располагаются под сарколеммой по периферии мышечного волокна. В поперечном сечении мышечные волокна имеют округлую форму, в них хорошо заметны миофибриллы, имеющие вид точек.

Рис. 7-16. Скелетная мышда языка. А продольный разрез; Б - поперечный раз. рез; В - поперечный срез отдельного мышечного волокна [из Voss H, 1957]
Б. Сердечная мышечная ткань (рис. 7-17). Мышечная оболочка стенки сердца (миокард) представлена поперечнополосатой сердечной мышцей. На срезе миокарда хорошо заметна сеть ветвящихся поперечнополосатых мышечных волокон. Вставочные диски в составе волокон маркируют границы между кардиомиоцитами. Ядра, имеющие овальную форму, ориентированы вдоль продольной оси волокон и занимают центральное положение. На поперечном срезе мышечные волокна имеют округлую форму. Миофибриллы в виде тёмных точек располагаются по периферии вокруг ядра.
В. Гладкомышечная ткань (рис. 7-18). В стенке полых органов гладкие мышцы обычно формируют внутренний циркулярный и наружный продольный слои. На продольном разрезе ГМК имеют веретеновидную форму. Хорошо заметны центральная утолщённая часть и заострённые концы клеток, в центральной части клетки располагается палочковидное ядро. На поперечном разрезе мышечные клетки имеют неправильную многоугольную форму. Ядро занимает центральное положение, по периферии клеток видны миофиламенты.

Рис. 7-17. Сердечная мышца. A - продольный разрез; Б - поперечный разрез [из Voss H, 1957]

Рис. 7-18. Гладкая мышца в продольном и поперечном разрезе [из Voss H, 1957]

АИTEPATYPA

Darby I, Skalli 0, Gabbiani G α-Smooth muscle actin is transiently expressed by myofibroblasts during experemental wound healing Laboratory Investigation, 1990, 63: 21
Gugliotta P et al. Specific demonstration of myoepithelial cells by anti- α smooth muscle actin antibody J. of Histochem. Cytochem. 1988, 36: 659-663
Lee J, Ishihara A, Jacobson K How do cells move along surfaces? Trends in Cell Biol, 1993, 3: 366-370
Maxield FR Regulation of leukocyte locomotion by Ca^{2+}. Trends in Cell Biol., 1993, 3: 386-391
Shimizu Y, Shaw S Mucins in the mainstream. Nature, 1993, 336: 630-631
Somlyo AP, Somlyo AV Signal transduction and regulation in smooth muscle Nature, 1994, 372: 231-236

ВОПРОСЫ

Пояснение. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждения, наиболее соответствующее каждому случаю.

1. Эмбриональный миогенез скелетной мышцы. Верно всё, KPOME:
(A) миобласты происходят из клеток миотома
(Б) часть пролиферирующих миобластов выделяется в качестве клеток-сателлитов
(B) в ходе митозов дочерние клетки G_{1}-миобластов остаются связанными цитоплазматическими мостиками, образуя мышечные трубочки
(Г) в мышечных трубочках начинается сборка миофибрилл
(Д) ядра перемещаются на периферию симпласта
2. Укажите Са ${ }^{2+}$ связывающий белок тонких нитей саркомера:
(A) актин
(Б) тропомиозин
(B) кальмодулин
(Г) тропонин С
(Д) кальсеквестрин
3. Триада скелетного мышечного волокна включает:
(A) две половины I-диска и один А-диск
(Б) две актиновые и одну миозиновую нити
(B) две цистерны саркоплазматического ретикулума и одну Т-трубочку
(Г) два ядра мышечного волокна и одну клетку-сателлит
(Д) два иона Ca^{2+} и одну молекулу тропонина С
4. Кардиомиоцит. Верно всё, КРОМЕ:
(A) клетка цилиндрической формы с разветвлёнными концами
(Б) содержит одно или два центрально расположенных ядра
(B) миофибриллы состоят из тонких и толстых нитей
(Г) вставочные диски содержат десмосомы и щелевые контакты
(Д) вместе с аксоном двигательного нейрона передних рогов спинного мозга образует нервномышечный синапс
5. Клетка в миокарде. Вставочные диски имеют многочисленные щелевые контакты, хорошо выражен комплекс Го́льджии, у полюсов ядра располагаются секреторные гранулы. Для какого кардиомиоцита наиболее характерны указанные признаки?
(А) Водитель ритма (пейсмейкер)
(Б) Кардиомиоцит волокон Пуркинье́
(B) Предсердный кардиомиоцит
(Г) Желудочковый кардиомиоцит
(Д) Кардиомиоцит пучка Гйса
6. Укажите структуру саркомера, в состав которой входят α-актинин, десмин, виментин:
(A) толстые нкти
(Б) тонкие нити
(B) Z -линия
(Г) М-линия
(Д) H -зона

7. Расслабление гладкомышечной клетки. Характерно всё, КРОМЕ:

(A) в саркоплазме сннжается концентрация Ca^{2+}
(Б) активируется аденилатциклаза
(B) увеличивается содержание инозитолтрифосфата
(Г) фосфатаза лёгких цепей миозина дефосфорилирует миозин
(Д) происходит дезинтеграция миозиновых миофиламентов
8. Саркомер. Верно всё, КРОМЕ:
(A) толстые нити состоят из миозина и C-белка
(Б) тонкие нити состоят из актина, тропомиозина, тропонинов
(B) в состав саркомера входят один A -диск и две половины I -диска
(Г) в середине I -диска проходит Z -линия
(Д) при сокращении уменьшается ширина А-диска
9. Что общего имеют мышечные волокна скелетной и сердечной мышц?
(A) Триады
(Б) н-Холинорецепторы
(B) Исчерченные поперечно миофибриллы
(Г) Вставочные диски
(Д) Клетки-сателлиты
10. При сокращении скелетного мышечного волокна происходит всё, КРОМЕ:
(А) взаимодействие ацетилхолина с н-холинорецепторами вызывает деполяризацию мембраны мышечного волокна
(Б) инозитолтрифосфат связывается со своим рецептором в мембране цистерн саркоплазматического ретикулума и открывает Ca^{2+}-каналы
(B) Ca^{2+} связывается с тропонином C
(Г) конформационные изменения тропомиозина приводят к разблокированию миозинсвязывающих участков актиновой нити и последующему прикреплению к ней головок миозина
(Д) скользящие тонкие нити тянут за собой Z-линии, вызывая сокращение саркомера
11. Гладкомышечная ткань. Правильны все утверждения, КРОМЕ:
(A) непроизвольная мышечная ткань
(Б) находится под контролем вегетативной нервной системы
(B) сократительная активность не зависит от гормональных влияний
(Г) формирует мышечную оболочку полых и трубчатых органов
(Д) способна к регенерации

Пояснение. Каждый из нижеприведённых вопросов 12-24 содержит четыре пронумерованных варианта ответов, из которых правильными могут быть один или несколько. Выберите:
А - если правильны ответы 1,2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны все ответы
12. Перед сокращением кардиомиоцита увеличение концентрации Ca^{2+} в саркоплазме происходит в силу:
(1) кальций-индуцированной мобилизации Ca^{2+}
(2) активации Ca^{2+}-насоса саркоплазматического ретикулума
(3) стимуляции рецепторов рианодина
(4) конформационных изменений рецепторов дигидропиридина
13. Укажите клетки, между которыми присутствуют щелевые контакты:
(1) кардиомиоциты
(2) миоэпителиальные клетки
(3) ГMK
(4) миофибробласты
14. Для быстросокращающихся белых мышечных волокон характерны:
(1) быстрый миозин
(2) высокая активность АТФазы миозина
(3) низкое содержание миоглобина
(4) высокая активность СДГ

15. Нейромоторная единица:

(1) в состав нейромоторных единиц входят двигательный нейрон и групла иннервируемых им экстрафузальных мышечных волокон
(2) мышечные волокна нейромоторной единицы находятся под нейротрофическим контролем
(3) сила сокращения мышцы зависит от количества активируемых нейромоторных единиц
(4) одна нейромоторная единица содержит быстросокращающиеся и медленносокращающиеся мышечные волокна
16. Какие из указанных признаков находят при myasthenia gravis?
(1) В мышечных волокнах развиваются необратимые дегенеративные изменения
(2) Нарушены процессы передачи возбужденияя с аксона мотонейрона на мышечное волокно
(3) Мышца утрачивает способность к регенерации
(4) В крови циркулируют АТ к холинорецепторам

17. Клетки-сателлиты:

(1) происходят из клеток спланхномезодермы
(2) расположены между плазмолеммой и базальной мембраной мышечного волокна
(3) способны к сокращению
(4) в постнатальном периоде обеспечивают рост мышечных волокон

18. Миоэпителиальная клетка:

(1) синтезирует гладкомышечный актин
(2) присутствует в грануляционной ткани заживающей раны
(3) содержит плотные тельца
(4) сокрашаясь, способствует ретракции раны
19. При бронхиальной астме происходит:
(1) выброс гистамина из тучных клеток
(2) связывание гистамина с рецепторами типа H_{1} плазмолеммы ГМК стенки бронхов
(3) активирование в ГМК бронхиального дерева фосфолипазы С
(4) сокращение ГМК стенки бронхов и бронхиол
20. При сокращении гладкомышечных клеток:
(1) аденилатциклаза, приводя к образованию цАМФ, стимулирует высвобождение Ca^{2+} из саркоплазматического ретикулума
(2) Ca^{2+} связывается с кальмодулином
(3) активируется фосфатаза лёгкнх цепей миозина
(4) фосфорилирсвание лёгких цепей миозина инициирует прикрепление головок миозина к тонкой нити

21. Гладкомышечная клетка:

(1) синтезирует коллагены и эластин
(2) имеет множество разных рецепторов в плазмолемме
(3) содержит кальмодулин - аналог тропонина С
(4) содержит миофибриллы
22. Какие мехклеточные контакты присутствуют во вставочных дисках?
(1) Десмосомы
(2) Промежуточные
(3) Щелевые
(4) Полудесмосомы
23. Периодическая спонтанная деполяризация плазмолеммы характерна для:
(1) миоэпителиальных клеток
(2) клеток-сателлитов
(3) скелетного мышечного волокна
(4) пейсмейкеров
24. Сердечная мышечная ткань:
(1) непроизвольная поперечнополосатая
(2) кардномиоциты формируют анастомозирующую сеть мышечных волокон
(3) сокращение сердечной мыш山ы инициируется кардиомиоцитами проводящей системы сердца
(4) стимуляция парасимпатической системы увеличивает силу сокращения сердечной мышцы

Пояснение. Для каждого из вопросов 25-30, пользуясь указанным рисунком, укажите букву, которой обозначена нужная структура на рисунке.
Вопросы 25 и 26 (рис. 7-19)
25. Какой белок блокирует миозинсвязывающий участок?
26. Укажите бедок, имеющий АТФазную активность:

Рис. 7-19. Механизм регуляции взаимодействия актина с миозином (по von $G a$ nong WF (1979) из Junqueira LC, Carneim J, 1991]

Вопросы 27 и 28 (рис. 7-20)
27. Какая линия проходит в центре саркомера?
28. Какой участок саркомера содержит только толстые нити?

Рис. 7-20. Рабочий кардиомиоцит [из Hees H, Sinowatz F (1992)]

Вопросы 29 и 30 (рис. 7-21)
29. Какие структуры состоят из десмина?
30. पто является аналогом Z-линии?

Рис. 7-21. Гладкомышечная клетка [из West JB, 1990]

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - B

Миотубы формируются при слиянии G_{0}-миобластов. В ходе эмбрионального миогенеза клетки миотомов мигрируют в места закладки скелетных мышц и здесь пролиферируют. После ряда митотических делений миобласты приобретают вытянутую форму, выстраиваются в параллельные цепи и начинают сливаться, образуя мышечные трубочки. В мышечных трубочках начинается сборка миофибрилл с характерной поперечной исчерченностью. Миграция ядер на периферию мышечной трубочки завершает формирование поперечнополосатого мышечного волокна. Часть пролиферирующих миобластов обособляется в виде клеток-сателлитов. Эти камбиальные клетки находятся под базальной мембраной мышечных волокон и сохраняют способность к миогенной дифференцировке.
2. Правильный ответ - Г
Ca^{2+} взаимодействует с Ca^{2+}-связывающим белком TnC . $\mathrm{TnC}, \mathrm{TnI}$ и TnT входят в состав тропонинового комплекса, который вместе с регуляторным белком тропомиозином актиновых (тонких) нитей участвует в регуляции взаимодействия актина и миозина. При повышении в саркоплазме концентрации Ca^{2+} эти катионы связываются с TnC . Наступающие после связывания Ca^{2+} конформационные изменения тропомиозина приводят к разблокированию миозинсвязывающего участка актиновой нити и присоединению к ней головок миозина. Кальмодулин - аналог TnС в ГМК. Кальсеквестрин -Ca^{2+}-связывающий белок саркоплазматического ретикулума.

3. Правильный ответ - B

Триада мышечного волокна - две терминальные цистерны саркоплазматической сети и проходящая между ними поперечная трубочка (Т-трубочка). Триады расположены на границе между А- и Iдисками саркомеров. В триадах происходит передача возбуждения в виде потенциала действия плазматической мембраны Т-трубочек на мембрану терминальных цистерн (сопряжение возбуждения и сокращения). В области триад мембрана Т-трубочек содержит рецепторы дигидропиридина. Деполяризация мембраны Т-трубочек вызывает в структуре рецепторов дигидропиридина конформационные изменения, передающиеся на рецепторы рианодина терминальных цистерн саркоплазматического ретикулума с последующим выбросом Ca^{2+} из полостей саркоплазматического ретикулума в саркоплазму и взаимодействием $\mathrm{Ca}^{2+} \mathrm{c} \mathrm{TnC}$.

4. Правильны ответ - Д

Кардиомиоцит - клетка цилиндрической формы с разветвлёнными концами, содержит одно или два центрально расположенных ядра. Сократительный аппарат - сеть миофибрилл с характерной поперечной исчерченностью. В зоне вставочньх дисков между смежными кардиомиоцитами присутствуют десмосомы, промежуточные и щелевые контакты. Терминальные варикозные ветвления аксонов вегетативных нейронов проходят между составленными из кардиомиоцитов волокнами, но не образуют нервно-мышечных синапсов, характерных для скелетной мышцы. Молекулы нейромедиаторов высвобождаются в межклеточное пространство и путём диффузии достигают своих рецепторов в плазмолемме кардиомиоцитов.

5. Правильный ответ - B

При повышении АД стенка предсердия сильно растягивается, что стимулирует предсердные кардиомиоциты к синтезу и секреции атриопептина - гормона, вызывающего снижение АД. Именно в связи с эндокринной функцией части предсердных кардиомиоцитов (преимущественно правого предсердия) в них хорошо развит комплекс Го́льджи, и присутствуют секреторные гранулы. Многочисленные щелевые контакты между кардиомиоцитами обеспечивают быстрое проведение возбуждения. Сочетание этих признаков не характерно для других кардиомиоцитов. Желудочковые кардиомиоциты крупнее предсердных, они имеют хорошо развитую систему Т-трубочек. В саркоплазме пейсмейкеров содержится сравнительно мало гликогена и небольшое число миофибрилл, локализованных в основном по периферии клеток. Проводящие кардиомиоциты пучка Ги́са имеют длинные спиральные миофибриллы, мелкие митохондрии и небольшое количество гликогена. Для

кардиомиоцитов волокон Пуркинье́ характерно присутствие редкой неупорядоченной сети миофибрилл, многочисленных мелких митохондрий, большого количества гликогена.

6. Іравильный ответ - В

α-Актинин, десмин и виментин входят в состав Z-линий, служащих для прикрепления тонкнх нитей. Тонкие нити состоят из актина, тропомиозина и тропонинов. Толстые нити образованы миозином и С-белком. H -зона - участок саркомера, представленный только толстыми нитями. В середине H зоны проходит M -линия. В области М-линии с толстыми нитями ассоциированы миомезин и КФК.

7. Правильный ответ - В

Инозитолтрифосфат образуется при возбуждении ГМК. Он активирует рецепторы инозитолтрифосфата, связанные с кальциевыми каналами саркоплазматического ретикулума, что приводит к выходу Ca^{2+} из кальциевых депо и последующему сокращению ГМК. При расслаблении ГМК активируется аденилатциклаза, катализирующая образование цАМФ. цАМФ усиливает работу кальциевого насоса, и в саркоплазме снижается концентрацня Ca^{2+}. При низкой концентрации Ca^{2+} фосфатаза лёгких цепей миозина осуществляет дефосфорилирование этой молекулы. Расслабление клетки завершается разборкой миозиновых нитей.

8. Іравильный ответ - Д

При сокращении ширина А-диска, соответствующая расположению толстых нитей, не уменьшается, т.к. длина обоих типов нитей (тонкие и толстые) при сокращении не изменяется (нити скользят относительно друг друга при постоянной их длине). Саркомер включает один А-диск и две половины 1 -диска. В середине I -диска проходит Z -линия, необходимая для прикрепления тонких нитей, состоящих из актина, тропомиозина и тропонина. Толстые нити состоят из миозина и С-белка. Нзона - участок саркомера, в котором присутствуют толстые нити, но нет тонких миофиламентов. При сокращении саркомера свободные концы тонких нитей приближаются к М-линии, уменьшая ширину H -зоны. Поскольку противоположные концы тонких нитей прикреплены к Z -линиям, то при скольжении тонких нитей возникает тянущее усилие, Z-линии сближаются, что и приводит к уменьшению ширины I-диска.

9. Правильный ответ - В

Сократительный аппарат в скелетной и сердечной мышцах имеет аналогичное строенне. В саркоплазме скелетного мышечного волокна и кардиомиоцита содержатся миофибриллы, реализующие сокращение. Структурно-функциональная единица миофибриллы - саркомер. Как результат упорядоченной укладки тонких и толстых нитей в саркомерах миофибриллы имеют поперечную исчерченность. Триада скелетного мышечного волокна - две терминальные цистерны саркоплазматической сети и проходящая между ними Т-трубочка. В кардиомиоцитах Т-трубочка контактирует только с одной терминальной цистерной - диада. Вставочные диски локализуются между смежными кардиомиоцитами н служат для механического их скрепления и проведения возбуждения. В постсинаптическую мембрану скелетных мышечных волокон встроены никотиновые холинорецепторы, отсутствующие в кардиомиоцитах. Под базальной мембраной скелетных мышечных волокон располагаются клетки-сателлиты, отвечающие за регенерацию мышцы. Камбиальных клеток в сердечной мышце нет, поэтому и не происходит восстановительной регенерации миокарда.

10. Правильный ответ - Б

Возбуждение мотонейрона приводит к секреции ацетилхолина из терминалей аксона в синаптическую щель. Ацетилхолин связывается с его рецепторами (никотиновые холинорецепторы мышечного типа), вмонтированными в постсинаптическую мембрану мышечного волокна (плазмолемма). Результат взаимодействия - деполяризация мембраны мышечного волокна, т.к. при взаимодействии нейромедиатора с холинорецептором открывается ионный канал в составе рецептора. Деполяризация мембраны мышечного волокна вызывает в структуре дигидропиридиновых рецепторов конформационные изменения, передающиеся на рианодиновые рецепторы в мембране саркоплазматического ретикулума. В саркоплазме увеличивается содержание кальция. При высокой концентрации Ca^{2+} эти ионы связываются с TnC и вызывают конформационные изменения тропомиозина, приводящие

к разблокированию миозинсвязывающих участков в составе актиновых нитей. Головки миозина присоединяются к тонким нитям и изменяют свою конформацию, создавая тянущее усилие, при котором тонкие нити начинают скользить между толстыми. Тянущее усилие возникает за счёт конформационных изменений молекулы миозина в её шарнирных участках после присоединения головок миозина к актину. Скользящие тонкие нити тянут за собой Z-линии, вызывая сокращение саркомера. Второй посредник инозитолтрифосфат активирует Ca^{2+}-каналы в ГМК.

11. Правильный ответ - В

Гладкомышечная ткань формирует мышечную стенку полых и трубчатых органов, способна к регенерации, является непроизвольной и находится под контролем вегетативной нервной системы. Сократительная активность ГМК зависит не только от нейромедиаторов. ГМК имеют множество рецепторных входов для различных гуморальных веществ, контролирующих их сократительную активность. Одни гормоны вызывают сокращение ГМК (ангиотензин II), другие - их расслабление (атриопептин).

12. Правильный ответ - Б

При возбуждении кардиомиоцита активированные потенциалзависимые каналы пропускают в клетку небольшое количество Ca^{2+}, который стимулирует рецепторы рианодина к мобилизации Ca^{2+} из саркоплазматического ретикулума (кальций-индуцированная мобилизация Ca^{2+}). Дигидропиридиновые рецепторы встроены в плазмолемму Т-трубочек скелетных мышечных волокон. В момент деполяризации плазмолеммы конформационные изменения дигидропиридиновых рецепторов активируют рианодиновые рецепторы в мембране саркоплазматического ретикулума, что приводит к открытию кальциевых каналов и выходу кальция из депо. Ca^{2+}-насос в мембране саркоплазматического ретикулума закачивает Ca^{2+} из саркоплазмы в дело.

13. Правильный ответ - Б

Между кардиомиоцитами щелевые контакты имеются преимущественно в продольных участках вставочных дисков. ГМК также связаны при помощи щелевых контактов. Щелевые контакты обеспечивают проведение возбуждения (ионный ток) между клетками и синхронизацию сокращения. Между миоэпителиальными клетками и между миофибробластами щелевые контакть отсутствуют.

14. Правильный ответ - A

Быстросокращающиеся белые мышечные волокна содержат быстрый миозин с высокой активностью АТФазы. Для таких мышечных волокон характерны анаэробный гликолитический путь метаболизма, следовательно, низкое содержание миоглобина и низкая активность митохондриальных ферментов (например, СДГ, цитохромоксидазы).

15. Правильный ответ - А

В состав нейромоторной единицы входят двигательный нейрон и группа иннервируемых им экстрафузальных мышечных волокон. Нейромоторная единица включает только быстросокращающиеся или только медленносокращающиеся мышечные волокна. Мотонейроны контролируют фенотип (в m.4. и сократительные характеристики) мышечных волокон нейромоторной единицы. Сила сокращения мышцы зависит от количества активируемых нейромоторных единиц.

16. Правильный ответ - В

Миастенияя тяжёлая псевдопаралитическая - аутоиммунное заболевание, при котором образуются АТ к холинорецепторам. АТ связываются с н-холинорецепторами постсинаптической мембраны мышечных волокон и препятствуют взаимодействию холинорецепторов с ацетилхолином, что приводит к нарушению синаптической передачи на мышечные волокна. Необратимые дегенеративные изменения скелетной мышцы и утрату способности к регенерации наблюдают при мышечных дистрофиях (например, при мышечной дистрофии Дюше́нна).

17. Правильный ответ - B

Клетки-сателлиты происходят из клеток миотомов (мезенхимные клетки спланхномезодермы источник развития висцеральных ГМК) и являются камбиальными элементами, отвечающими за

регенерацию скелетной мышечной ткани. Клетки-сателлиты расположены между плазмолеммой и базальной мембраной мышечного волокна. В течение всей жизни они сохраняют способность к пролиферации и дифференцировке в миобласты, а в постнатальном периоде обеспечивают рост мышечных волокон в длину. В ходе миогенеза способность к сокращению первыми приобретают мышечные трубочки после появления в них миофибрилл.

18. Правильный ответ - Б

Миоэпителиальные клетки располагаются вокруг секреторных отделов и выводных протоков экзокринных желёз. При сокращении миоэпителиальные клетки обеспечивают выведение секрета из железы. Миофибробласты присутствуют в грануляционной ткани заживающей раны. Сокращаясь, они способствует ретракции раны.

19. Правильный ответ - Д

Взаимодействие комплекса $\mathrm{Ar}-\mathrm{AT}$ с тучной клеткой приводит к их дегрануляции и выбросу гистамина. Гистамин через рецепторы типа H_{1} плазмолеммы ГМК активирует G_{p}-белок, который в свою очередь активирует фосфолипазу С. Фосфолипаза С катализирует образование инозитолтрифосфата, стимулирующего высвобождение Ca^{2+} из его депо. Повышение концентрации Ca^{2+} в саркоплазме вызывает сокращение ГМК.

20. Правильный ответ - В

При сокращении ГМК в саркоплазме увеличиваєтся концентрация Ca^{2+}. Ионы кальция связываются с кальмодулином, который активирует киназу лёгких цепей миозина, катализирующую фосфорилирование одной из лёгких цепей миозина. Фосфорилирование лёгких цепей миозина инициирует прикрепление головок миозина к актину и последующее втягивание актиновых миофиламентов между миозиновыми, т.е. сокращение. При расслаблении ГМК аденилатциклаза катализирует образование цАМФ. Последний активирует работу кальциевых насосов, выкачивающих Ca^{2+} из саркоплазмы в полости саркоплазматического ретикулума. При низкой концентрации Ca^{2+} в саркоплазме фосфатаза лёгких цепей миозина осуществляет дефосфорилирование миозина, что приводит к инактивации молекулы миозина.

21. Правильный ответ - A

В ГМК актиновые и миозиновые нити не формируют миофибрилл, характерных для поперечнополосатой мышечной ткани. Актиновые миофиламенты ориентированы преимущественно вдоль продольной оси клетки и прикреплены к плотным тельцам. Миозиновые нити формируются между стабильными актиновыми миофиламентами при сокращении ГМК. Сокращение клетки контролирует не только вегетативная нервная система. ГМК имеют множество рецепторных входов, через которые осуществляется гуморальный контроль её сократительной активности. ГМК также синтезнруют и секретируют коллагены и эластин.

22. Правильный ответ - A

На поперечных участках вставочного диска локализуются десмосомы и промежуточные контакты. Продольные участки содержат многочисленные щелевые контакты (nexus). Десмосомы обеспечивают механическое сцепление, препятствующее расхождению кардиомиоцитов при сокращении. Промежуточные контакты служат для прикрепления тонких актиновых нитей ближайшего саркомера к сарколемме кардиомиоцита. Щелевые контакты - межклеточные ионные каналы, позволяющие возбуждению перескакивать от кардиомиоцита к кардиомиоциту. Это обстоятельство позволяет синхронизировать одновременное сокращение множества кардиомиоцитов в составе функционального синцития. Полудесмосомы служат для прикрепления эпителиальных и миоэпителиальных клеток к базальной мембране.

23. Правильный ответ - Г

Спонтанная деполяризация плазматической мембраны - главное свойство водителей ритма. Пейсмейкеры ответственны за генерацию ритма сердца. Водители ритма синусно-предсердного узла генерируют 60-90 импульсов в минуту.

24．Правильный ответ－A

Сердечная мышца сформирована непроизвольной поперечнополосатой сердечной мышечной тканью． Кардиомиоциты образуют анастомозирующую сеть мышечных волокон．Сокращение сердечной мышцы инициируется кардиомиоцитами проводящей системы сердца．Иннервация влияет на часто－ ту генерации импульсов водителями ритма，скорость проведения импульсов и силу сокращения миокарда．Стимуляция блуждающего нерва снижает частоту генерации импульсов，замедляет ско－ рость их проведения，уменьшает силу сокращения сердечной мышцы．

25．Правильный ответ－В

В покое миозинсвязывающие участки актиновой нити заблокированы тропомиозином，который препятствует взаимодействию актиновых нитей и миозина．Связывание Ca^{2+} с TnC вызывает кон－ формационные изменения тропомиозина，что приводит к разблокированию миозинсвязывающих участков и прикреплению головок миозина к тонкой нитн．

26．Правильны⿺夂 ответ－A

АТФазной активностью обладает миозин．Прикрепление головок миозина к актину происходит после разблокирования миозинсвязывающих участков актиновой нити．Отделение головок миози－ на от тонких нитей становится возможным после связывания АТФ с миозином．Энергия，возника－ ющая при гидролизе АТФ，идёт на восстановление конформации молекулы миозина．

27．Правидьный ответ－Д

В центре саркомера проходит М－линия．Здесь с толстыми нитями ассоциированы миомезин и КФК． КФК способствует быстрому восстановлению АТФ при сокращении．Миомезин важен для сборки толстых нитей и их фиксации при сокращении．

28．Правильный ответ－В

Толстые нити занимают участок саркомера，соответствующий A －диску．Однако тонкие нити час－ тично входят в А－диск，поэтому только H －зона представлена толстыми нитями．

29．Правильны⿺夂几 ответ－Г

Промежуточные филаменты содержат десмин．В ГМК сосудов，кроме десминовых，присутствуют также промежуточные филаменты，образованные виментином．Промежуточные филаменты вместе с микротрубочками и актиновыми микрофиламентами участвуют в формировании цитоскелета．

30．Правильны ответ－A

Плотные тельца содержат α－актинин，это аналоги Z－линий поперечнополосатой мышечной ткани． Связанные сетью промежуточных филаментов，они служат для прикрепления актиновых нитей．

Нейроанатомия

Нервная система человека содержит не менее триллиона нервных (10^{12}), около 10^{13} глиальных клеток и не меньшее количество ($>10^{13}$) сина́псов. Число клеточных типов неизвестно (не менее 100). Это множество, по числу элементов превышающее даже иммунную систему, образует сложную пространственную структуру - единую сеть с многочисленными связями на уровне как отдельной клетки, так и клеточных ансамблей - головной и спинной мозг (ЦНС, см. 8.3), нервы и их периферические контакты (8.2), органы чувств (8.4). Нервная система регулирует и координирует физиологические процессы на уровне органов, их систем и организма в целом, хранит информацию (память), перерабатывает и интегрирует следы памяти и сигналы из внешней и внутренней среды, управляет мышечными и железистыми клетками, обеспечивает координацию движений и т.д. и т.п. Применительно к этому гигантскому множеству понятия нервная ткань и нервная система практически равнозначны. Гистологические элементы системы рассмотрены в 8.1.

8.I. Нервная ткань

Гистологические элементы нервной ткани (нейроны и глиоциты) и органов чувств развиваются из нескольких источников. Нейруляция, в ходе которой образуется нейроэктодерма, формируются нервная трубка, нервный гребень и нейрогенные плакоды, рассмотрена в главе 3. В нейроонтогенезе происходит ряд морфогенетических процессов (например, гибель нейронов, направленный рост аксонов). Их совокупный эффект приводит к формированию нервной системы, функционирование которой как conditio sine qua non определяют сина́псы - специализированные межклеточные контакты между нейронами, а также между нейронами и исполнительными элементами (мышечные и секреторные).

I. ИСТОЧНИКИ РАЗВИТИЯ

Из нейроэктодермы образуются нервная трубка, нервный гребень, нейрогенные плакоды.

А. Нервная трубка

1. Формированне (см. главу 3 VI Г).
2. Состав (рис. 8-1): внутренняя пограничная мембрана, эпе́ндимный слой, плащевой (мантийный) слой, краевая вуаль, наружная пограничная мембрана. Матричные клетки эпе́ндимного слоя - источник почти всех клеток ЦНС.
3. Матричные (вентрикулярные) клетки сосредоточены вблизи внутренней пограничной мембраны. Клетки активно размножаются, что сопровождается циклическим перемещением их ядер в пределах эпе́ндимного слоя и изменением формы клеток. Закончившие пролиферацию клетки (нейробласты), а также потенциально способные к пролиферации глиобласты выселяются в плащевой слой. Часть вентрикулярных клеток остаётся in situ - будущая эпе́ндима.

Рис. 8-1. Миграция ядер матричной клетки в эпе́ндимном слое нервной трубки. Матричные клетки делятся вблизи внутренней пограничной мембраны. Часть потомков выселяется из эпе́ндимного слоя в мантийный - будущее серое вещество. Другая часть остаётся в эпе́ндимном слое. В последнем случае перикарион дочерней клетки отделя ется от внутренней пограничной мембраны и постепенно приближается к мантийному слою, но не проникает в него. Эта клетка остаётся связанной с внутренней пограничной мембраной при помощи тонкого и длинного отростка. Другой отросток клетки уходит в мантийный слой и достигает наружной пограничной мембраны. Далее этот отросток отделяется от наружной пограничной мембраны и по мере возвращения перикариона во внутреннюю часть эпе́ндимного слоя подвергается ретракции. Тахая клетка вновь вступает в митоз с последующем участием в следующем аналогичном цикле [из Cowan WM, 1979]
a. Медуллобластома - резко злокачественная опухоль, развивается из матричных клеток, поражает преимущественно детей.
б. Нейробласты - клетки с большим округлым ядром, плотным ядрышком и бледной цитоплазмой - дают начало всем нейронам ЦНС. Нейроны - классический пример клеток, относящихся к статической популяции. Ни при каких условиях они in vivo не способны к пролиферации и обновлению.
(1) Обонятельные нейроны (происходят из обонятельных плакод) эпителиальной выстилки носовых ходов - единственное известное исключение.
(2) Полиплоидизация нервных клеток рассматривается как механизм генного контроля функций нейронов.
(3) Дву- и многоядерные нейроны - редкая находка (в патологических, как правило, условиях); их расценивают как абортивные проявления регенерации нервных клеток.
(4) Уо́ллеровская регенерация аксонов в составе периферических нервных волокон и в значительно меньшей степени регенерация аксонов в ЦНС - проявления репаративной регенерации части нейрона.
в. Глиобласты - предшественники макроглии (астроциты и олигодендро[глио)циты). Все типы макроглии способны к пролиферации.
(1) Глиобластомы - злокачественные опухоли, развивающиеся из общего предшественника клеток макроглии.
(2) Астроцитома и олигодендроглиома - чаще доброкачественные и относительно медленно растущие глиомы. Встречаются злокачественные астроцитомы.
г. Эпеєндима - разновидность глиальных клеток (элендимоциты), дифференцируется из матричных клеток, выстилает желудочки головного мозга и центральный канал спинного мозга.

Эпендимо́ма - чаще доброкачественная опухоль, исходящая из клеток эпе́ндимы. Встречается и резко злокачественный вариант (анапластическая эпендимо́ма).
д. Микроглия. Генез клеток микроглии спорен.
(1) Костномозговое происхождение - распространённая точка зрения; клетки микроглии относят к системе мононуклеарных фагоцитов. Против представления о мезенхимном происхождении - отсутствие в плазмолемме рецепторов, характерных для мононуклеарных фагоцитов.
(2) Нейроэктодермальный генез достаточно вероятен.
(3) Двоякий источник (костный мозг и нейроэктодерма) - возможное решение вопроса. В этом случае подразумевается гетерогенность популяции клеток микроглии.
4. Пороки развития нервной трубки (см. главу 3 VI Ж 1).
Б. Нервный гребень

1. Формирование нервного гребня рассмотрено в главе 3 VI Д.
2. Производные нервного гребня приведены в таблице 3-2.
3. Нейробластома - злокачественное новообразование (почти исключительно детского возраста), возникающее из клеток нервного гребня и их малодифференцированных клеточных потомков в составе ганглиев симпатического отдела нервной системы, мозгового вещества надпочечников и параганглиев. Клиника опухоли крайне вариабельна, что связано с распространённой миграцией клеток нервного гребня в эмбриональном периоде развития.
Онкомаркёры весьма полезны для диагностики нейробластомы.
(1) Маркёры в моче. Определение катехоловых аминов, суточной экскреции ванилилминдальной и гомованилиновой кислот.
(2) Сывороточные маркёры. Повышение концентрации нейроно-специфической енола́зы, ферритина, ЛДГ.
(3) Онкогены. Амплификация протоонкогена N-тус в опухолевых клетках указывает на неблагоприятный прогноз.

4. Нейрокристопатии (см. главу 3 VI Ж 2).

В. Нейрогенные плакоды (см. главу 3 VI E).

Г. Другие источники

1. Органы чувств. Ряд клеток органов чувств, а также сенсорных рецепторов относят к системе тканей внутренней среды или эпителиям (см. 8.4).
2. Микроглия. Генез микроглии спорен (см. 1 А 3 д).

II. MOPФOГEHE3

Морфогенетические процессы, реализация которых приводит к становлению жёстко организованной сложной системы, где каждый элемент индивидуален и знает своё место, эта невообразимо (для осознания человеком) сложная задача всё же выполняется в нейроонтогенезе каждого человека. Ошибки программы (дефектные гены) или её реализации при выполнении этой задачи либо элиминируют развивающийся эмбрион (по разным оценкам, летали этого типа достигают 25%), либо приводят к появлению дефектов развития, в m.ч. нервно-психической сферы, и развитию пограничных состояний (например, $\mathrm{IQ} \leq 90$). Жёсткость организации мозга определяют два момента: адресная миграция клеток и направленный рост их отростков. Фено́мены индукции, адресной миграции клеток, направленного роста аксонов, гибели клеток, т.н. нейротрофические взаимодействия, хорошо известны для нервной системы.

A. Индукция (см. главу 3 I В 2)

1. Первичная эмбриональная индукция, приводящая к появлению нейроэктодермы, рассмотрена в главе 3 VI .
2. Индукция хрусталика под влиянием глазного пузыря рассмотрена в главе 8.4.
3. Индукционные межклеточные взаимодействия в нейроонтогенезе определяют судьбу каждого конкретного клеточного типа в нервной системе.
Б. Адресная миграция клеток (рис. 8-2). В ходе морфогенеза мозга нейробласты выселяются из эпе́ндимного в мантийный слой (см. 8.1 I A). При формировании коры больших полушарий головного мозга и мозжечка нейробласты выселяются из эпе́ндимного слоя не только в мантийный слой, но также и в краевую вуаль (рис. 8-1). В мозжечке они формируют слой клеток Пуркинье́. Не все нейробласты этой локализации дифференцируются здесь в ганглиозные нейроны мозжечка. Часть из них мигрирует в обратном направлении, образуя зернистые клетки и клетки Го́льджи II типа.

Рис. 8-2. Адресная миграция нейронов в нервной трубке. А - фрагмент нервной трубки в поперечном разрезе (направление миграции нейробластов указано стрелками); Б - перемещение нейробласта по отростку радиальной глии [из Cowan $W M, 1979]$

1. Радиальная глия. Важное значение в направленной миграции клеток в пределах нервной трубки имеют специальные поддерживающие клетки радиальной глии, возникающие в раннем нейроонтогенезе. Их тела расположены в эпе́ндимном слое, а длинные отростки проходят через все слои нервной трубки до её наружной поверхности. По отросткам радиальной глии перемещаются нейробласты из эпе́ндимного слоя в наружные слои нервной трубки.
2. Агирия - дефект развития в виде слабой выраженности извилин коры мозга вследствие искажённой миграции нейробластов в эмбриогенезе.
В. Направленный рост аксонов, как и адресная миграция клеток, осуществляется в рамках концепции *сигнал-ответ». Эта концепция объясняет, как нейрон узнаёт свою область иннервации и находит своего, часто единственного среди множества, клеточного партнёра, и как в развивающемся мозге многочисленные переплетающиеся отростки нейронов устанавливают связи с замечательной точностью. Отросток нейрона - аксон - сразу и без ошибок находит свои мишени. Направленный рост аксонов осушествляет конус роста.
3. Конус роста - специализированная структура терминали растущего аксона, впервые детально описанная С.Рамон-и-Кахалем, имеет на конце булавовидное утолщение (ламеллоподия), от которого отходят тонкие пальцевидные отростки - филоподии.

Филоподии растут в различных направлениях и исследуют потенциальное пространство роста аксона.
2. Механизмы. На этот счёт существует несколько предположений. С.Рамон-и-Кахаль сформулировал представление о хемотропизме. Современный вариант этого представления - заранее размеченные пути.
а. Хемотропизм. Согласно этому представлению, рост аксонов происходит по градиенту концентрации специфических химических факторов, вырабатываемых в мишенях. Действительно, in vitro градиенты фактора роста нервов (NGF) и других веществ (например, ацетилхолина) влияют на направление роста аксонов.
6. Меченые пути (по другой терминологии, верстовые столбы) образованы молекулярными метками (своего рода знаками навигационной обстановки), закономерно распределёнными в потенциальном пространстве роста аксонов. По мере роста пионерский аксон последовательно считывает одну за другой метки, расположенные в межклеточном пространстве или на поверхности клеток, и растёт в нужном направлении. Вслед за ним мигрируют отростки других аксонов, совокупность которых формирует тракты в ЦНС и нервы на периферии. Ключевой момент представления о заранее размеченных путях - узнавание - обеспечивают молекулы адгезии.
в. Молекулы адгезии встроены в плазмолемму и расположены во внеклеточном матриксе.
(1) Мембранные молекулы ламеллоподии и филоподий взаимодействуют с комплементарными молекулами в пространстве роста и обеслечивают фиксацию конуса роста на поверхности миішени в нужном месте и в нужное время.
Нейромодулин - одна из таких молекул.
(2) Молекулы внеклеточного матрикса: ламинин, фибронектин, коллаген. Наибольшее значение имеет ламинин. Этот крупномолекулярный белок базальной мембраны служит своего рода посредником между поверхностью клетки и молекулами внеклеточного матрикса́ (например, коллагеном IV типа). In vitro ламинин поддерживает адгезию, распластывание и миграцию клеток различных типов, рост аксонов, выживание нейронов и прикрепление конусов роста к субстрату.
Г. Физиологическая гибель клеток. Запрограммированная массовая смерть нейронов происходит на строго определённых этапах онтогенеза. Естественная гибель нейронов прослежена как в ЦНС, так и в периферической нервной системе. Объём субпопуляции гибнущих

нейронов оценивают в широком интервале - от 25 до 75%. Иногда в популяции погибают все нейроны (например, несущие метку для направленного роста аксонов).
Причины гибели нейронов объясняют по-разному.
а. Преимущество в борьбе за выживание имеют те нейроны, которые раньше появляются, быстрее растут, образуют более эффективные контакты с мишенями, менее зависимы от трофических факторов, способны быстро увеличивать число рецепторов для этих факторов, наконец, имеют более эффективный ретроградный аксонный транспорт (см. главу 8.2 I Б 2) трофических факторов. Другими словами, преимущество в выживании имеют нейроны, наиболее активно участвующие в межклеточных взаимодействиях.
б. Выживание некоторых нейронов беспозвоночных полностью контролируется. Так, у почвенной нематоды мутации по гену ced-3 предотвращают запрограммированную гибель нейронов. Найдены также гены, ответственные за выбор между жизнью и смертью клеток. Аналоги таких генов имеются и у человека.
в. Причины постоянной гибели нейронов (её именуют физиологической) в постнатальном онтогенезе не очень понятны. В среднем у человека за год погибает около 10 млн. клеток, а в течение жизни мозг теряет около $0,1 \%$ всех нейронов. Бытует наиболее поверхностное объяснение - влияние неблагоприятных факторов микроокружения (например, сбои в кровоснабжении) и внешней среды.
Д. Нейротрофические взаимодействия. Эта концепция предусматривает информационный обмен между нейронами, отличающийся от химической передачи возбуждения в синапсах. Согласно концепции, такой обмен поддерживает фенотип взаимодейстөующих клеток на уровне, адекватном выполнению их функции (см., например, нейротрофический эффект нерва на мышцу в главе 7 IE1).
Е. Регенерация. Нейроны относят к статической клеточной популяции. Это означает, что в постнатальном онтогенезе не происходит образования новых нейронов. Следовательно, погибающие нейроны не восстанавливаются. Но из этого не следует, что в нервной системе отсутствует регенерация. Она осуществляется за счёт восстановления целостности повреждённых нейронов, роста их отростков, размножения глиальных и шванновских клеток. Всё это, а также изменение связей между регенерирующими и интактными клетками при благоприятных условиях могут привести к восстановлению функции в нервной системе.
Ж. Трансплантация. При болезни Паркинсона дегенерация нейронов чёрной субстанции (substantia nigra) вызывает дефицит дофамина в области стриатума и нарушения в центрах и путях двигательного контроля. Интрацеребральная трансплантация содержащих дофамин клеток - приемлемая альтернатива при недостаточно эффективной фармакотерапии.

III. НЕЙРОН

Нейроны (термин предложил Вильгельм фон Вальдейер) - главные клеточные типы нервной ткани. Эти возбудимые клетки осуществляют передачу электрических сигналов (между собой при помощи нейромедиаторов в синапсах) и обеспечивают способность мозга к переработке информации. Существенная часть каждого нейрона - цитоскелет. Перикарион (тело) и отходящие от него отростки (аксон и ветвящиеся дендриты) - стандартные части нейронов (рис. 8-3). А. Перикарион содержит ядро, комплекс Го́льджи, гранулярную эндоплазматическую сеть, митохондрии, лизосомы, элементы цитоскелета.

1. Ядро нейрона имеет мелкодисперсный хроматин и ядрышко. В силу относительно большого диаметра ядро в СМ выглядит (особенно в крупных нейронах) как оптически пустое. Ядрышко крупное и резко базофильное.
2. Комплекс Го́льджи хорошо развит, особенно в крупных нейронах. Его особенность расположение между ядром и местом отхождения аксона, что отражает мощный

транспорт белков, синтезированных в гранулярной эндоплазматической сети перикариона, в аксон.
3. Аксонный холмик - занятая комплексом Го́льджи область перикариона, место генерации потенциалов действия.
4. Гранулярная эндоплазматическая сеть. В перикарионе и дендритах развита гранулярная эндоплазматическая сеть (глыбки рибосом впервые обнаружил Франи Ниссль при окраске метиленовым синим, поэтому её в нейронах иногда называют веществом Ниссля [тигроид*]).

Тигролиз - распыление тигроидного вещества, отражающее глубокие дистрофические изменения при нарушении целостности нейрона (например, при сдавлении или перерезке аксона).
5. Митохондрии многочисленны. Значительные энергетические потребности нервных клеток обеспечивает преимущественно аэробный метаболизм, поэтому нейроны крайне чувствительны к гипоксии.
6. Цитоскелет (см. III Д).
7. Пигменты. В нейронах (особенно с возрастом) накапливается липофусцин. Нейроны некоторых ядер мозга в норме содержат иные пигменты, поэтому эти образования и получили своё название (substantia nigra, locus coeruleus).
Б. Отростки, отходящие от перикариона, - аксон и дендриты (рис. 8-3 и 8-4). Отростки нейрона участвуют в образовании синапсов.

1. Аксон (нейрит) - длинный отросток, как правило, не ветвящийся по его протяжению, но образующий концевые разветвления, содержащие синаптические пузырьки; проводит пачки импульсов (спа́йки) от перикариона.

[^0]a. Экспрессия нейромодулина (GAP-43) - специфичного для аксона фосфобелка признак начала дифференцировки нейронов. Сначала образуются короткие отростки, которые потенциально могут стать либо аксоном, либо дендритами. Отросток, накапливающий белок GAP-43, в дальнейшем становится аксоном.
б. Объём аксона может достигать 99% суммарного объёма нейрона.
в. Длина аксона может быть весьма значительной - десятки сантиметров.
2. Дендриты - ветвящиеся отростки, заканчивающиеся вблизи от тела нейрона. В плазмолемму встроены постсинаптические рецепторы, дендриты проводят возбуждение к перикариону. Проксимальные области дендритов - продолжение перикариона. Поэтому они содержат рибосомы, компоненты гранулярной и гладкой эндоплазматической сети, элементы комплекса Го́льджи.
В. Классификация. Нейроны отличаются по размерам и форме перикариона, числу отростков, их синаптическим связям, характеру ветвления дендритов, электрофизиологическим характеристикам, химии нейромедиаторов, позиции в функциональных сетях и множеству других характеристик. По этой причине классификации нейронов многочисленны.

1. Клеточный тип. Эта классификация могла бы быть главенствующей, но находится в стадии разработки.
2. Количество отростков
a. Аполяры - отростков нет (условно к ним можно отнести ранние нейробласты).
б. Униполяры - единственный отросток (формально одноотростчатыми нервными клетками можно считать псевдоуниполярные нейроны спинномозговых узлов).

Псевдоуниполяры на самом деле имеют два отростка (центральный и периферический), отходящие от короткого выроста перикарнона. В нейроонтогенезе от перикариона отходят два отростка, они сближаются и образуют общий ствол отхождения от перикариона. Периферический отросток иногда называют аксоном, центральный - дендритом, что неверно.
в. Биполяры имеют аксон и ветвящийся дендрит (например, обонятельные рецепторные нервные клетки).
г. Мультиполяры. Число отростков более двух (один аксон, остальные - дендриты). Классический пример - мотонейроны передних рогов спинного мозга.
3. Химия нейромедиатора. Критерий классификации - синтез, накопление в синаптических пузырьках и экскреция в синаптическую щель конкретного нейромедиатора. При этом к имени нейромедиатора добавляют ердический. Иногда в качестве критерия применяют тип мембранного рецептора, регистрирующего наличие нейромедиатора (в этом случае добавляют цептивный).
а. Холинергические. Нейромедиатор - ацетилхолин (например, двигательные нейроны передних рогов спинного мозга, иннервирующие скелетные мышечные волокна; парасимпатические нейроны блуждающего нерва, иннервирующие сердце, ГМК и железы желудка).
6. Адренергические. Нейромедиатор - норадреналин (например, постганглионарные нейроны симпатического отдела вегетативной нервной системы, иннервирующие сердце, ГМК сосудов и внутренних органов).
в. Дофаминергические (например, некоторые нервные клетки базальных ядер мозга). Недостаточная секреция дофамина приводит к развитию паркинсонизма.
4. Форма перикариона (например, пирамидные и звёздчатые нейроны коры большого мозга).
5. Длина аксона (капример, короткоаксонные и длинноаксонные нервные клетки коры больших полушарий). В зависимости от длины аксона различают клетки Го́льджи I и II типа. Клетки Го́льджи I типа имеют длинные аксоны (например, аксоны пирамидных

нейронов коры больших полушарий достигают длины $50-70$ см). Клетки Го́льджи II типа имеют короткие аксоны. В сером веществе спинного мозга короткие безмиелиновые аксоны клеток Го́льджи II типа могут не выходить за пределы сегмента, проходить в спайках или соединять соседние сегменты. Другим примером клеток Го́льджи II типа могут служить вставочные нейроны зернистого слоя коры мозжечка (глава 8.3 II А 3 б). Вставочные нейроны сетчатки (амакринные клетки [глава 8.4 I A 2 e(3) (б)]) вообще не имеют аксонов.
6. Позиция в нейронной цепочке (в т.ч. в дуге рефлекса) позволяет выделять чувствительные (воспринимающие сигнал из внешней или внутренней среды), двигательные (иннервирующие сократительные и секреторные элементы) и находящиеся между ними вставочные (ассоциативные в нейронных сетях) нервные клетки.
7. Направление возбуждения к центру - афферентные нервные клетки (в т.ч. чувствительные нейроны разных модальностей, восходящих путей), к периферии эфферентные нейроны двигательных путей и трактов (например, пирамидной и экстрапирамидной систем).
8. Модальность - характер воспринимаемого и передаваемого сигнала (например, механорецепторные, зрительные, обонятельные нейроны и т.д.).
9. Отдел нервной системы. Целесообразно выделять нервные клетки вегетативного отдела нервной системы. Нейроны соматического отдела - чувствительные и двигательные, не относящиеся к вегетативным.
10. Бо́диана т.н. универсальная классификация частей нейрона предложена для сопоставления частей нейрона (перикарион, дендриты, аксон), направления возбуждения и характера электрогенеза в частях нервной клетки (рис. 8-4).
Г. Синапсы (см. также главу 8.2 III Б 1, рис. 8-20) - специализированные межклеточные контакты, передающие сигналы от одного нейрона к другому при помощи нейромедиаторов. Химическая природа нейромедиатора, морфология синапсов и участвующие в формировании

Рис. 8-4. Универсальная классификация частей различных типов нейронов. Дендритная зона - возбуждающий или тормозящий вход. Аксон - проводящая возбуждение (спайки) часть нейрона, его концевые разветвления (выход) участвуют в образовании синапсов с химической или электрической передачей; $\mathbf{A - \Gamma}$ - афферентные (чувствительные) нейроны; Д - мотонейрон; \mathbf{E} вставочные (ассоциативные) нейроны [из Bodian D, 1966]

синапса части нейронов в различных отделах нервной системы значительно варьируют. В синапсе выделяют пресинаптическую и постсинаптическую части, разделённые синаптической щелью шириной $20-30$ нм. Пресинаптические нейроны синтезируют, хранят и секретируют нейромедиаторы. При изменении мембранного потенциала в терминалях нейромедиатор выделяется в синаптическую щель (экзоцитоз) и связывается со своими рецепторами в постсинаптической мембране, вызывая изменение мембранного потенциала постсинаптического нейрона.

1. Классификация

a. Аксодендритические - синапсы между аксоном одного нейрона и дендритами другого нейрона.
б. Аксо-аксональные - синапсы между аксонами разных нейронов.
в. Аксосоматические - синапсы между терминалями аксона одного нейрона и телом другого нейрона.
r. Дендродендритические - синапсы между дендритами нейронов.
2. Пресинаптическая часть - специализированная часть терминали отростка нейрона, где расположены синаптические пузырьки и митохондрии. Пресинаптическая мембрана (плазмолемма) содержит потенциалзависимые Ca^{2+}-каналы (глава 2 I B 16 (2) (в)). При деполяризации мембраны каналы открываются и ионы Ca^{2+} входят в терминаль, запуская в активных зонах экзоцитоз нейромедиатора.
a. Роль $\mathbf{C a}^{2+}$. Слияние синаптических пузырьков с пресинаптической мембраной происходит при увеличении концентрации Ca^{2+} в цитозоле нервной терминали.

Синаптотагмин - белок синаптического пузырька, связывающийся с Ca^{2+} и регулирующий экзоцитоз. Синаптотагмин участвует также в реорганизации примембранного цитоскелета, что важно для секреции медиатора.
б. Узнавание (рис. 8-5). Предшествующий слиянию синаптических пузырьков и плазмолеммы процесс узнавания синаптическим пузырьком пресинаптической мембраны происходит при взаимодействии мембранных белков (синаптобревин, SNAP-25 и синтаксин).
в. Активные зоны. В пресинаптической мембране выявлены т.н. активные зоны участки утолщения мембраны, в которых происходит экзоцитоз. Активные зоны расположены против скоплений рецепторов в постсинаптической мембране, что уменьшает задержку в передаче сигнала, связанную с диффузией нейромедиатора в синаптической щели.
г. Влияние токсинов. Синтаксин, SNAP-25 и синаптобревин - мишени ботулинического токсина, необратимо подавляющего слияние синаптических пузырьков с пресинаптической мембраной. Мишень столбнячного токсина - синаптобревин.
3. Постсинаптическая часть. Постсинаптическая мембрана содержит рецепторы нейромедиатора, ионные каналы.
4. Синаптическая передача - сложный каскад событий. Многие неврологические и психические заболевания сопровождаются нарушением синаптической передачи. Различные лекарственные препараты влияют на синаптическую передачу, вызывая нежелательный эффект (капример, галлюциногены) или, наоборот, корригируя патологический процесс (например, психофармакологические средства [антипсихотические препараты]).
a. Механизм. Синаптическая передача возможна при реализации ряда последовательных процессов: синтеза нейромедиатора, его накопления и хранения в синаптических пузырьках вблизи пресинаптической мембраны, высвобождения нейромедиатора из нервной терминали, кратковременного взаимодействия нейромедиатора с рецептором, встроенным в постсинаптическую мембрану, разрушения нейромедиатора или захвата его нервной терминалью.

Рис. 8.5. Белки, участвующие в слиянии синаптических пузырьков с пресинаптической мембраной. Синаптобревин, встроенный в мембрану синаптического пузырька, взаимодействует с белками пресинаптической мембраны (SNAP-25 и синтаксин) [из Hata Yet al, 1993]
(1) Синтез нейромедиатора. Ферменты, необходимые для образовании нейромедиаторов, синтезируются в перикарионе и транспортируются к синаптической терминали по аксонам, где взаимодействуют с молекулярными предшественниками нейромедиаторов.
(2) Хранение нейромедиатора. Нейромедиатор накапливается в нервной терминали, находясь внутри синаптических пузырьков вместе с АТФ и некоторыми катионами. В пузырьке находится несколько тысяч молекул нейромедиатора, что составляет квант.

Квант нейромедиатора. Величина кванта не зависит от импульсной активности, а определяется количеством поступившего в нейрон предшественника и активностью ферментов, участвующих в синтезе нейромедиатора.
(3) Секреция нейромедиатора. Когда потенциал действия достигает нервной терминали, в цитозоле резко повышается концентрация Ca^{2+}, синаптические пузырьки сливаются с пресинаптической мембраной, что приводит к выделению квантов нейромедиатора в синаптическую щель. Незначительное количество нейромедиатора постоянно (спонтанно) секретируется в синаптическую щель.
(4) Взаимодействие нейромедиатора с рецептором. После выброса в синаптическую щель молекулы нейромедиатора диффундируют в синаптической щели и достигают своих рецепторов в постсинаптической мембране.
Электрогенез в постсинаптической мембране. Взаимодействие нейромедиатора с рецептором приводит к изменению мембранного потенциала (деполяризация или гиперполяризация) постсинаптической мембраны.
(a) Возбуждающие синапсы. При деполяризации возбуждение по плазмолемме распространяется до аксонного холмика, где генерируются потенциалы действия.
(б) Тормозные синапсы. При гиперполяризации возбудимость мембраны уменьшается, и потенциалы действия не генерируются.
(5) Удаление нейромедиатора из синаптической щели происходит двояко: инактивацией ферментом, захватом терминалью.
(a) Инактивация нейромедиатора. Кратковременность взаимодействия нейромедиатора с рецептором достигается разрушением нейромедиатора специальными ферментами (например, ацетилхолина - ацетилхолинэстеразой).
(б) Захват нейромедиатора. В большинстве синапсов передача сигналов прекращается вследствие быстрого захвата нейромедиатора пресинаптической терминалью.
Транспортёры. Захват норадреналина осуществляют специфические Na^{+}- и Cl^{-}-транспортирующие белки (например, норадреналин-транспортирующий белок 1) мишени трициклических антидепрессантов (например, дезипрамин и имипрамин). Система захвата биогенных аминов - точка приложения антидепрессантов и таких препаратов, как кокаин и амфетамины. Дефекты транспортёров норадреналина и серотонина - кандидаты на роль первопричины при психических расстройствах, таких, как маниакально-депрессивные состояния.

6. Нейромедиаторы

(1) Химия. Большинство нейромедиаторов - аминокислоты и их производные. Одни нейроны модифицируют аминокислоты с образованием аминов (норадреналин, серотонин, ацетилхолин), другие - нейромедиаторов пептидной природы (эндорфины, энкефалины). Лишь небольшое количество нейромедиаторов образовано не аминокислотами. Нейроны могут синтезировать более одного нейромедиатора.
(2) Наиболее распространённые нейромедиаторы (табл. 8-1)
(a) Ацетилхолин секретируется из терминалей соматических мотонейронов (не-рвно-мышечные синапсы), преганглионарных волокон, постганглионарных холинергических (парасимпатических) волокон вегетативной нервной системы и разветвлений аксонов многих нейронов ЦНС (базальные ганглии, двигательная кора). Синтезируется из холина и ацетил-КоА при помощи холинацетилтрансферазы, взаимодействует с холинорецепторами нескольких типов. Кратковременное взаимодействие лиганда с рецептором прекращает ацетилхолинэстераза, гидролизующая ацетилхолин на холин и ацетат.
(i) Болезнь Альиха́ймера. При этом заболевании происходит гибель нейронов (в т.ч. холинергических) в коре мозга и гиппокампе.
(ii) Отравления
[I] Ботулизм. Токсин Clostridium botulinum угнетает секрецию ацетилхолина.

Таблица 8-1. Нейромедиаторы

Ацетилхолин
 Аминокислоты

γ-аминомасляная кислота
глниин
глутамат
N-метил-D-аспартат (NMDA)

Моноамины

адреналин
дофамин
норадреналнн
серотоннн
Нейропептиды
\quad VIP
\quad вазопрессин
вещество P
нейропептид Y
окситоцин
соматостатин
эндорфин
энкефалины
[II] Фосфорорганические соединения ингибируют ацетилхолинэстеразу, что приводит к увеличению количества ацетилхолина в сннаптической щели. При отравлении пралидоксим способствует отделению соединения от фермента, атропин защищает холинорецепторы от взаимодействия с избыточным количеством нейромедиатора.
[III] Бледная поганка. Токсины Amanita phalloides не только ингибируют активность ацетилхолинэстеразы, но и блокируют холинорецепторы.
(б) Дофамин - нейромедиатор в окончаниях некоторых аксонов периферических нервов и многих нейронов ЦНС (чёрное вещество, средний мозг, гипоталамус). После секреции и взаимодействия с рецепторами дофамин активно захватывается пресинаптической терминалью, где его расщепляет моноаминоксидаза. Дофамин метаболизирует с образованием ряда веществ, в т.ч. гомованилиновой кислоты.
(i) Шизофрени́я. При этом заболевании наблюдается повышенная реактивность дофаминергической системы, что связывают с увеличением количества D_{2}-рецепторов дофамина. Антипсихотические средства снижают активность дофаминергической системы до нормального уровня.
(ii) Хоре́я наследственная - нарушение функции нейронов коры и полосатого тела, сопровождается повышенной реактивностью дофаминергической системы.
(iii) Болезнь Па́ркинсона - патологическое уменьшение количества нейронов в чёрном веществе и других областях мозга с уменьшением уровня дофамина и метионин-энкефалина, преобладанием эффектов холинергической системы. Применение L-ДОФА увеличивает уровень дофамина, амантадин стимулирует секрецию дофамина, бромокриптин активирует рецепторы дофамина. Антихолинергические препараты уменышают активность холинергической системы мозга.
(в) Норадреналин секретируется из большинства постганглионарных симпатических волокон и является нейромедиатором между многими нейронами ЦНС (например, гипоталамус, голубоватое место). Образуется из дофамина путём гидролиза при помощи дофамин- β-гидроксилазы. Норадреналин хранится в синаптических пузырьках, после высвобождения взаимодействует с адренорецепторами, реакция прекращается в результате захвата норадреналина пресинаптической частью. Уровень норадреналина определяется активностью тирозин гидроксилазы и моноаминоксидазы. Моноаминоксидаза и катехол- O метилтрансфераза переводят норадреналин в неактивные метаболиты (норметанефрин, 3-метокси-4-гидрокси-фенилэтиленгликоль, 3-метокси-4-гидроксиминдальная кислота).

Норадреналин - мощный вазоконстриктор, эффект происходит при взаимодействии нейромедиатора с ГМК стенки кровеносных сосудов.
(r) Серотонин (5-гидрокситриптамин) - нейромедиатор многих центральных нейронов (например, ядра шва). Предшественником служит триптофан, гидроксилируемый триптофангидроксилазой до 5 -гидрокситриптофана с последующим декарбоксилированием декарбоксилазой L-аминокислот. Расщепляется моноаминоксидазой с образованием 5 -гидроксииндолуксусной кислоты.
(i) Депрессия характеризуется снижением количества двух нейромедиаторов (норадреналина и серотонина) и увеличением экспрессии их рецепторов. Антидепрессанты уменьшают число этих рецепторов.
(ii) Маниакальный синдром. При этом состоянии увеличивается уровень норадреналина на фоне снижения количества серотонина и адренорецепторов. Литий снижает секрецию норадреналина, образование вторых посредников и увеличивает экспрессию адренорецепторов.
(iii) Аутнзм. Гиперсеротонинемия, но в $30-50 \%$ случаев без явных нарушений обмена серотонина в мозге.
(д) γ-Аминомасляная кислота - тормозной нейромедиатор в ЦНС (базальные ганглии, мозжечок). Образуется из глутаминовой кислоты под действием декарбоксилазы глутаминовой кислоты, захватывается из межклеточного пространства пресинаптической частью и деградирует под влиянием трансаминазы γ-аминомасляной кислоты.
(i) Эпнлепси́я - внезапные синхронные вспышки активности групп нейронов в разных областях мозга, связывают со снижением тормозного действия γ-аминомасляной кислоты. Фенитоин стабилизирует плазмолемму нейронов и снижает избыточную секрецию нейромедиатора, фенобарбитал повышает связывание γ-аминомасляной кислоты с рецепторами, вальпроевая кислота увеличивает содержание нейромедиатора.
(ii) Состояние тревоги - психическая реакция, связанная с уменьшением тормозного эффекта γ-аминомасляной кислоты. Бензодиазепины стимулируют взаимодействие нейромедиатора с рецептором и поддерживают ингибиторное действие γ-аминомасляной кислоты.
(e) β-Эндорфин - нейромедиатор полипептидной природы многих нейронов ЦНС (гипоталамус, миндалина мозжечка, таламус, голубоватое место). Проопиомеланокортин транспортируется по аксонам и расщепляется пептидазами на фрагменты, одним из которых является β-эндорфин. Нейромедиатор секретируется в синапсе, взаимодействует с рецепторами на постсинаптической мембране, а затем гидролизуется пептидазами.
(ж) Метионин-энкефалин и лейцин-энкефалин - небольшие пептиды (5 аминокислотных остатков), присутствующие во многих нейронах ЦНС (бледный шар, таламус, хвостатое ядро, центральное серое вещество). Как и эндорфин, образуются из проопиомеланокортина. После секреции взаимодействуют с пептидергическими (опиоидными) рецепторами.
(з) Динорфины. Эта группа нейромедиаторов состоит из 7 пептидов близкой аминокислотной последовательности, которые присутствуют в нейронах тех же анатомических областей, что и энкефалинергические нейроны. Образуются из продинорфина, инактивируются путём гидролиза.
(и) Вещество \mathbf{P} - нейромедиатор пептидной природы в нейронах центральной и периферической нервной системы (базальные ганглии, гипоталамус, спинномозговые узлы).

Боль. Передача болевых стимулов реализуется при помощи вещества P и опиоидных пептидов (глава 8.3 I 1 в (2) (6)).
(к) Глицин, глутаминовая и аспарагиновая кислоты. Эти аминокислоты в некоторых синапсах являются нейромедиаторами (глицин во вставочных нейронах спинного мозга, глутаминовая кислота - в нейронах мозжечка и спинного мозга, аспарагиновая кислота - в нейронах коры). Глутаминовая и аспарагиновая кислоты вызывают возбуждающие ответы, а глицин - тормозные.
(л) Другие нейромедиаторы (VIP, адреналин, бомбезин, брадикинин, вазопрессин, карнозин, нейротензин, соматостатин, холецистокинин). Их роль для синаптической передачи остаётся неясной. В синаптической передаче, возможно, участвует прион.
Д. Цитоскелет нейронов состоит из микротрубочек, промежуточных филаментов (нейрофиламенты) и микрофиламентов.

1. Микротрубочки - наиболее крупные элементы цитоскелета, их диаметр 24 нм. С ними связывают внутриклеточный, в т.ч. аксонный, транспорт (глава 8.2 I Б 2). От перикариона по отросткам перемещаются различные вещества (белки, нейромедиаторы и т.д.), органеллы (митохондрии, элементы цитоскелета, везикулы и т.д.). Микротрубочки в перикарионе и дендритах (в отличие от аксона) не имеют направленной ориентации.
а. Ориентация (рис. 8-6). Большинство микротрубочек аксона (+)-концом направлено к терминали, а (-)-концом - к перикариону. Характер ориентации микротрубочек имеет важное значение для распределения по отросткам различных органелл. K (+)концу перемещаются митохондрии и секреторные пузырьки, а к (-)-концу - рибосомы, мультивезикулярные тельца, элементы комплекса Го́льджи.
б. τ-Белок - один из белков, связанных с микротрубочками большинства клеточных типов. τ-Белок связывается с тубулином и стимулирует сборку микротрубочек, образует между ними поперечные сшивки. Модифицированная форма τ-белка, формирующего волокна из пары спиральных нитей в составе плотных аномальных структур (нейрофибриллярных клубков), обнаружена в нейронах мозга при болезни Альиха́ймера.
2. Нейрофибриллы. При импрегнации солями серебра в нейронах можно обнаружить сплетения нитевидных структур, в аксонах расположенных параллельно друг другу. Нейрофибриллы - типичный артефакт, образующийся при осаждении серебром белков цитоскелета.
3. Микрофиламенты (см. главу 2 III Б 3).

Рис. 8.6. Ориентация микротрубочек в отростках нейрона. Аксон отличается от дендритов полярной ориентацией мнкротрубочек. В нём микротрубочки своими (+)-концами направлены к терминали, а (-)-концами - к перикариону [из Black MM, Baas PW, 1989]

IV. НЕЙРОГЛИЯ

Термин «нейроглия» ввёл немецкий патолог Рудольф Ви́рхов для описания связующих элементов между нейронами. Эти клетки составляют почти половину объёма мозга. Среди глиальных клеток мозга выделяют эпе́ндимную глию, макроглию и микроглию (рис. 8-7), из клеток эпе́ндимной глии - танициты (радиальная глия) и эпителиоидную эпе́ндимную глию. Макроглия состоит из астроцитов и олигодендроцитов. В периферической нервной системе присутствуют шва́кновские клетки и группа окружающих нейроны вспомогательных клеток в ганглиях. Образующие миелин клетки - щва́нновские и олигодендроциты.
А. Астроциты - звёздчатые клетки, их отростки отходят от тела клетки в разных направлениях, оплетают нейроны, сосуды, клетки (эпе́ндимы) желудочков мозга, образуя расширения в виде концевой ножки. Маркёр астроцитов - глиальный фибриллярный кислый белок промежуточных филаментов. Астроциты имеют β-адренорецепторы и рецепторы многих нейромедиаторов.

1. Типы

a. Волокнистые астроциты с длинными, слабо или совсем не ветвящимися отростками; присутствуют в белом веществе мозга.
6. Протоплазматические астроциты с многочисленными короткими и ветвящимися отростками; находятся в сером веществе.
2. Функции астроглии многочисленны.
a. В гистогенезе - проводящие пути для миграции недифференцированных нейронов в коре мозжечка и для врастания аксонов в зрительный нерв.
б. Транспорт метаболитов из капилляров мозга в нервную ткань. Астроцитарные ножки почти полностью покрывают капилляры мозга, что послужило поводом для предположения, что астроциты формируют гематоэнцефалический барьер.

Рис. 8-7. Глиальные клетки: А - волокнистый астроцит; Б - протоплазматический астроцит; В микроглия; Г - олигодендроглиоциты [из DeMyer W, 1988]
в. Регулмция химического состава межклеточной жидкости. Астроциты участвуют в метаболизме глутаминовой и γ-аминомасляной кислот - соответственно возбуждающего и тормозного нейромедиаторов ЦНС. После высвобождения этих нейромедиаторов в синаптическую щель часть молекул поступает в астроциты, где превращается в глутамин.
r. Астроциты изолируют рецептивные поверхности нейронов.
д. Участие в патологических процессах - пролиферация и замещение погибших нейронов.
c. Фагоцитоз и экспрессия Ar MHC II.
ж. Астроциты выделяют ряд веществ, способствующих росту аксонов: фактор роста нервов (NGF), компоненты межклеточного матрикса ламинин и фибронектин, инициирующие и ускоряющие удлинение отростков нейронов.
Б. Миелинобразующие клетки - щва́нновские и олигодендроциты.

1. Олигодендро(глио)циты. Как правило, более мелкие клетки, чем астроциты, но в этих миелинобразующих клетках ЦНС высока плотность органелл.
a. Cepoe вещество мозга. Здесь олигодендроциты находятся в непосредственном контакте с перикарионами и отростками нейронов.
2. Белое вещество. Здесь олигодендроциты расположены рядами между нервными волокнами. Именно миелин придает белому веществу характерный цвет, отличающий его от серого вещества.
3. IIIва́нновские клетки входят в состав миелиновых и безмиелиновых периферических нервных волокон (глава 8.2IA,8.2 I Б), синтезируют белки $\mathrm{P}_{0}, \mathrm{P}_{1}, \mathrm{P}_{2}$, образуют миелин и рассматрнваются как аналоги олигодендроцитов. Маркёр швӓнновских клеток - белок S100b. Шванновские клетки образуют щелевые контакты.
4. Миелин - компактная структура из мембран, спирально закрученных вокруг аксонов. 70% массы миелина составляют липиды. Важные компоненты - белки миелина: $\mathrm{P}_{0}, \mathrm{P}_{22}$, основной белок миелина, протеолипидный и другие.

4. Миелинизация

а. Олигодендроглиоциты. При помощи тонких неветвящихся отростков олигодендроциты контактируют с аксонами и, продвигаясь относительно аксона уплощёнными концами отростков, окружают его циркулярной пластиной миелина (хорошая аналогия - вращаясь вокруг аксонов, наматьвают миелин на аксон). Каждый олигодендроцит при помощи своих отростков миелинизирует несколько аксонов.
б. Миелинизация аксонов в периферической нервной системе рассмотрена на рис. 8-8. Каждая шва́нновская клетка миелинизирует один аксон.
в. Демиелинизация происходит при мутациях генов, кодирующих белки миелина, щелевых контактов и др., а также развивается вследствие иммунологических дефектов и вторично - при разных заболеваниях.
(1) Множественный склероз (см. главу 18).
(2) Лейкодистрофии. При этих наследуемых заболеваниях ЦНС происходит выраженная демиелинизация.
(3) Лейкоэнцефалиты сопровождаются демиелинизацией нервных волокон ЦНС.
(4) Центральный понтинный миелинолиз - демиелинизация в центральных отделах моста головного мозга, вероятно, связана с нарушениями электролитного баланса (в особенности Na^{+}).
(5) Невропати́и
(a) Коннексин-32 - белок щелевого контакта. При одной из форм болезни ШІрко́-Mapui-Týma щвадннвские клетки синтезируют и содержат дефектный коннексин-32.
(б) Гийе́на-Барре́ синдром
(в) Диабетическая невропатия, особенно у пожилых больных с длительным течением диабета и тяжёлой гипергликемией. Причиной считают накопление сорбитола в шванновских клетках с последующим их повреждением. Возникает замедление скорости нервной проводимости с изменением функции шва́кновских клеток и развитием сегментарной демиелинизации и дегенерации аксонов.
(г) Хроннческая воспалительная демиелинизирующая полиневропатия.
(6) Недостаточность оксидазы фитановой кислоты.
(7) Недостаток витамина \mathbf{B}_{12} приводит к демиелинизации, а также к дегенерации аксонов, поражая преимущественно периферические нервы, спинной мозг (где демиелинизируются боковые и задние столбы) и мозжечок.

B. Эпе́ндимная глия

1. Эпе́ндимные клетки кубической формы образуют эпителиоподобный пласт, выстилающий центральный канал и желудочки мозга. Клетки имеют хорошо развитые реснички и многочисленные пузырьки в цитоплазме. Клетки формируют промежуточные, плотные и щелевые контакты и образуют барьер проницаемости.
2. Танициты имеют вытянутый отросток, идущий в мозг и часто заканчивающийся на кровеносном сосуде. Клетки этого типа почти не имеют ресничек. В нейроонтогенезе отростки таницитов служат проводящими путями для миграции нейробластов.
Г. Микроглия. Клетки микроглии имеют небольшие размеры, неправильную форму, многочисленные ветвящиеся отростки, ядро с крупными глыбками хроматина, множество лизосом, гранулы липофусцина и плотные пластинчатые тельца. Функция в интактном мозге неясна. В ответ на повреждения самого различного характера клетки микроглии быстро размножаются и активируются.
3. Активация микроглиоцитов заключается в их пролиферации, экспрессии Аг MHC II и появлении фагоцитарной активности. Следовательно, их можно рассматривать как иммунокомпетентные клетки. Аналогично при различной патологии мозга поведение астроцитов, которые также могут фагоцитировать (Аг-представляющие клетки). Более того, астроциты (в отличие от клеток микроглии) вырабатывают вещества, характерные для макрофагов - аполипопротеин Е, простагландины, ИЛ-1.
a. Митогены - колониестимулирующий фактор макрофагов (М-CSF), колониестимулирующий фактор гранулоцитов и макрофагов (GM-CSF) и ИЛ-3.
4. Экспрессия Аг MHC II (см. главу 11).
в. Фагоцитоз наблюдается при различных патологических условиях (например, при рассеянном склерозе и аутоиммунном энцефалите).
5. Болезнь Альцхӑ̈иерра. Клетки микроглии обнаружены в составе зрелых бляшек мозга при прогрессирующем слабоумии по типу болезни Альиха́ймера. При этом в мозге присутствуют характерные внутриклеточные нейрофибриллярные клубки и диффузные внеклеточные отложения амилоидного β-белка, выделяемого нейронами и глиальными клетками. Эти отложения образуют сенільные бляшки, которые по мере созревания вызывают дегенерацию нейронов и их отростков. Находясь в центре бляшки, микроглиальные клетки реагируют на воспаление или разрушение нервной ткани активацией. В наружной части бляшки располагаются также реактивные астроциты.
а. Клубки состоят в основном из аномально фосфорилированных τ-белков микротрубочек.
б. Бляшки состоят из β-амилоидного белка - аномального фрагмента амилоидного предшественника трансмембранного гликопротеина.
в. Синаптическая передача, в особенности холинергическая, при болезни Альихаймера нарушена.

8.2. Перифөричөская нөрвная система

В этой подглаве рассмотрены вегетативный отдел нервной системы (IV) и на примерах, относящихся к соматическому отделу нервной системы, структура нервных проводников (нервное волокно - I, периферический нерв - II) и нервных окончаний (чувствительные и двигательные - III).

I. HEPBHЫE BO^OKHA

В зависимости от того, формируют ли шванновские клетки вокруг осевого цилиндра миелин, выделяют безмиелиновые и миелинизированные нервные волокна. Скорость проведения возбуждения существенно зависит от диаметра и миелинизации нервного волокна (табл. 8-2).
А. Безмиелиновые нервные волокна состоят из осевых цилиндров, окружённых шва́нновскими клетками. При погружении осевого цилиндра в шва́нновскую клетку её клеточная мембрана смыкается и образует мезаксон (рис. 8-8) - сдвоенные мембраны шва́нновской клетки. Каждая шванновская клетка подобным образом окружает несколько осевых цилиндров.

Таблица 8-2. Классификация нервных волокон по диаметру и скорости проведения ($\Pi \mathrm{o}:$ DeMyer W. Neuroanatomy. National Medical Series, Baltimore: Williams a. Wilkins, 1988, p.63)

Тип	$\underset{\text { (мкм) }}{\text { Диаметр }}$	Скорость проведения ($\mathrm{m} /$ сек)	Структуры
Соматические и висцеральные эфференты			
А α-Мотонейроны	12-20	70-120	Экстрафузальные мышечные волокна
γ-Мотонейроны	2-8	10-50	Интрафузальные мыщечные волокна
B	<3	3-15	Преганглионарные аксоны к нейронам вегетативных ганглиев
C	0.2-1,2	0,7-2,3	Постганглионарные аксоны для ГМК и желёз
Кохнне афференты			
A_{α}	12-20	70-120	Рецепторы суставов
A_{β}	6-12	30-70	Тельца Пачйи и осязательные рецепторы
A_{6}	2-6	4-30	Осязательные, температурные и болевые рецепторы
C	<2	0,5-2	Болевые, температурные, некоторые механорецепторы
Висцеральние эфференты			
A C	$\begin{aligned} & 2-12 \\ & <2 \end{aligned}$	$\begin{aligned} & \hline 4-70 \\ & 0,2-2 \end{aligned}$	Рецепторы внутренних органов Рецепторы внутренних органов
Мыиечные афференты			
\mathbf{I}_{α}	12-20	70-120	Аннулоспиральные окончания мышечных веретён
I_{β}	12-20	70-120	Сухожильные органы Го́льджхи
II	6-12	30-70	Вторичные окончания мышечных веретён
III	2-6	4-30	Окончания, ответственные за болевое давление
IV	<2	0,5-2	Болевые рецепторы

Б. Миелиновое нервное волокно состоит из осевого цилиндра, вокруг которого шва́нновские клетки образуют миелин за счёт удлинения и концентрического наслаивания мембран мезаксона. Каждая шванновская клетка миелинизирует небольшой сегмент аксона. Миелин прерывается через регулярные промежутки - перехваты Ранвье́, иногда называемые узлами. Фактически это границы между двумя соседними шванновскими клетками. В миелине периферических нервов присутствуют небольшие просветления - насечки $Ш$ Пид-та-Лантермана. Снаружи от миелина располагаются тонкий слой цитоплазмы шванновской клетки и её ядро.

Рис. 8-8. Развитие миелинового волокна. В верхней части рисунка показаны ранние стадии образования миелина. По мере удлинения мезаксона происходит спиральное наслаивание мембраны шва́нновской клетки. При этом её цитоплазма смещается на периферию. Насечка Шмидта-Лантермана - узкая полоса, в пределах которой мембраны миелина расходятся. и между ними расположены небольшие островки цитоплазмы шванновской клетки. В нижней части рисунка дана схема продольного среза миелинового волокна в области перехвата Ранвье́ - границы между соседними шванновскими клетками, где они соединяются при помощи переплетающихся коротких отростков. В перехвате аксолемма осевого цилиндра не покрыта миелиновой оболочкой [из Robertson JD, 1960]

1. Осевой цилиндр содержит митохондрии, элементы гладкой эндоплазматической сети, пузырьки, а также элементы цитоскелета - микротрубочки, нейрофиламенты, микрофиламенты и микротрабекулы.
a. Микротрубочки построены из тубулинов (см. главу 2 III Б 1).
б. Нейрофиламенты относят к промежуточным нитям цитоскелета, они состоят из трёх белков (т.н. нейрофиламентный триплет).
в. Микрофиламенты содержат актин (см. главу 2 III Б 3).
г. Микротрабекулы - ажурная сеть белковых нитей, образующих поддерживающий каркас для микротрубочек и других органелл осевого цилиндра.
2. Аксонный транспорт различных компонентов обеспечивает кинезин микротрубочек (см. главу 2 III Б 1 а (3)). Различают быстрый ($100-1000$ мм / сутки) и медленный аксонный транспорт ($1-10$ мм /сутки), а также антероградный (транспорт от перикариона) и ретроградный (к перикариону). Основной материал антероградного транспорта - белки, синтезированные в перикарионе (например, белки ионных каналов, ферменты синтеза нейромедиаторов).
3. Перехваты Ранвье́. На границе между соседними шванновскими клетками участок плазматической мембраны аксона (аксолемма) не прикрыт миелином. Здесь шванновские клетки образуют многочисленные переплетающиеся отростки. Аксолемма перехватов Ранвье́ содержит множество потенциалзависимых Na^{+}-каналов [глава 2 I $\mathbf{B} 16$ (2) (а)], необходимых для поддержания импульсной активности. Эти каналы практически отсутствуют в прикрытых миелином сегментах аксона. Преимущественную локализацию Na^{+}-каналов в перехватах Ранвье́ контролируют связанные с каналами молекулы анкирина G.
Скачкообразное проведение нервных импульсов в миелиновых волокнах, когда сигнал перескакивает от одного перехвата к другому, как раз и обеспечивают Na^{+}-каналы перехватов Ранвье́. По этой же причине в миелиновых волокнах (в отличие от не имеющих перехватов безмиелиновых волокон) скорость проведения выше.
4. Насечки Шмидта-Лантермана - участки расслоения миелина, образовавшиеся при миелинизации; в них присутствует цитоплазма шванновских клеток. Функция насечек неясна.

II. HEPB

Периферические нервы состоят из миелиновых и безмиелиновых волокон, сгруппированных в пучки.
А. Оболочки нерва (рис. 8-28).

1. Эндоневрий - рыхлая соединительная ткань между отдельными нервными волокнами.
2. Периневрий. Выделяют наружную часть - плотную соединительную ткань, окружающую каждый пучок нервных волокон, и внутреннюю часть - несколько концентрических слоёв плоских периневральных клеток, снаружи и изнутри покрытых исключительно толстой базальной мембраной, содержащей коллаген типа IV, ламинин, нидоген и фибронектин.
Периневральный барьер, необходимый для поддержания гомеостаза в эндоневрии, обра-
зует внутренняя часть периневрия - эпителиоподобный пласт периневральных клеток,
соединённых при помощи плотных контактов. Барьер контролирует транспорт молекул через периневрий к нервным волокнам, предотвращает доступ в эндоневрий инфекционных агентов, защищает нервные волокна от повреждения при растяжении нерва.
3. Эпиневрий - волокнистая соединительная ткань, объединяюцая все пучки в составе нерва.
Б. Кровоснабжение. Периферический нерв содержит разветвлённую сеть кровеносных сосудов. В эпиневрии и наружной (соединительнотканной) части периневрия - артериолы и венулы, а также лимфатические сосуды. Эндоневрий содержит кровеносные капилляры.
В. Иннервация. Периферический нерв имеет специальные нервные волокна - nervi nervorum - тонкие чувствительные и симпатические нервные волокна. Их источник - сам нерв или сосудистые нервные сплетения. Терминали nervi nervorum прослежены в эпи-, пери- и эндоневрии.
Г. Дегенерация и регенерация (рис. 8.9 и 8-10). При повреждении нерва центральный отрезок (связанный с перикарионами) и периферический отрезок (дистальнее места повреждения) претерпевают разные изменения. Дегенерация нервных волокон происходит на небольшом протяжении центрального и на всём протяжении периферического отрезка уо́леровская дегенерация.
4. Функции перикариона после травмы нерва существенно угнетены (в частности, происходит распыление вещества Ни́ссля [тигролиз], что отражает прекращение синтеза белка, следовательно - аксонного транспорта).
5. Уо́меровская дегенерация проявляется в виде разрушения осевых цилиндров, их фрагментации, распада миелина. Фрагменты осевых цилиндров и миелина захватывают макрофаги и частично шванновские клетки, формирующие бюнгнеровские ленты.
Бюнгнеровские лента - цепочка шванновских клеток, служащая направляющими путями для регенерирующих аксонов (точнее - аксонов из центрального отрезка нервного волокна).

Рис. 8.9. Регенерация нервного волокна. А - волокно до повреждения; Б - в периферическом отрезке аксон дегенерирует, клетки в месте повреждения пролиферируют; \mathbf{B} - регенерация аксона в центральном отрезке, прорастание веточек аксона в периферический отрезок; $\mathbf{\Gamma}$ - полная регенерация нервного волокна и восстановление связей [из Hees H, Sinowatz F, 1992]
3. Аксонный транспорт, обеспечивающий регенерацию аксонов, возобновляется в центральном отрезке повреждённого нерва через три дня и полностью восстанавливается через две недели после травмы. Скорость роста регенерирующих аксонов составляет 0,25 мм в сутки, а после прохождения зоны травмы увеличивается до 3-4 мм в сутки.
4. Ампутационная неврома. Если центральный и периферический отрезки перерезанного нерва разделены промежутком, в котором неизбежно происходит образование соединительнотканного рубца, то регенерирующие аксоны здесь интенсивно и беспорядочно разрастаются, образуя т.н. ампутационную неврому. Ампутационная неврома препятствует дальнейшей регенерации и восстановлению иннервации. Для предупреждения образования ампутационной невромы центральный и периферический отрезки нерва максимально сближают и сшивают отдельные пучки повреждённого нерва.
5. Регенерация периферического отрезка. Конус роста аксона перемещается по поверхности шванновской клетки (по бюнгнеровским лентам), отслаивая покрывающую её базальную мембрану. Выделяемые шванновской клеткой различные стимуляторы (нейротрофические факторы) поглощаются аксоном и ретроградно транспортируются в перикарион. В перикарионе эти факторы стимулируют синтез белка и поддерживают его на высоком уровне.
a. Коллатеральное ветвление (спраутинг). Восстановление утраченных связей может происходить и за счёт образования коллатеральных ветвей из окружающих и неповреждённых нервных волокон. Чаще коллатеральные ветви отходят от участка аксона в области перехвата Ранвье́ (рис. 8-11).

Бюнгнеровская лента

Рис. 8-10. Взаимоотношения между шєаниовскими клетками и регенерирующими аксона-
ми. А - интактное волокно; Б - после перерезки в периферическом отрезке щванновские клетки, утратившие связь с аксоном, начинают продуцировать фактор роста нервов и его рецепторы, встраивающиеся в клеточную мембрану самих щванновских клеток; В и Г - контакт шванновских клеток с растущим аксоном блокирует в щванновских клетках синтез фактора роста нервов и его рецепторов [из Johnson EM et al, 1988]

Рис. 8-11. Ветви аксона двигательного нейрона. Коллатерали образуются в области нервной терминали и претерминальной части нервного волокна, но чаще - в перехватах Ранвье́ [из Barker D, Ip MC, 1966]
6. Стимуляция регенерации нервов имеет важное значение для клинической практики.
(1) Предотвращение образования рубца. Тормозящий регенерацию фактор образование соединительнотканного рубца. Поэтому воздействие на область повреждения нерва антимитотическими агентами (цитостатики) способствует более быстрой регенерации нервов.
(2) Нейротрофические факторы стимулируют рост и регенерацию нервов. Источник этих факторов - щванновские клетки.

III. HEPBHЫE ОКОНЧАНИЯ

Окончания аксонов периферических нервов подразделяют на чувствительные (афферентные) и двигательные (эфферентные).
А. Чувствительные нервные окончания. Внешние раздражители, а также сигналы о состоянии внутренней среды и двигательной системы организма регистрируют чувствительные нервные окончания - сенсорные рецепторы.

1. Классифнкация. По Лаврентьеву, различают свободные и несвободные воспринимающие приборы.
a. Свободные нервные окончания - терминальные ветвления периферического отростка чувствительного нейрона.
2. Несвободные нервные окончания, помимо терминальных ветвлений периферического отростка чувствительного нейрона, содержат специальные клетки. Практически все окончания этого типа - механорецепторы.
в. Инкапсулированные механорецепторы (инкапсулированные тельца) - несвободные окончания, имеющие оформленную соединительнотканную капсулу.
3. Свободные нервные окончания (рис. 8-12) - наиболее распространённый тип сенсорных рецепторов.
a. Локализация. Свободные окончания расположены в прослойках соединительной ткани внутренних органов, а также в соединительнотканной основе кожи, где они сосредоточены преимущественно в сосочках. Свободные нервные окончания эпидермиса расположены в базальном и шиповатом его слоях. В областях кожи с высокой тактильной чувствительностью (например, пальцы рук) терминали достигают зернистого слоя.
б. Строение. Для рассматриваемого вида чувствительных нервных окончаний, локализованных в соединительной ткани, термин свободное условен, т.к. ветвления осевого цилиндра, как правило, окружены вспомогательными клетками (аналогичны шванновским). Варианты взаимодействия вспомогательных клеток с осевым цилиндром

Рис. 8-12. Свободные нервные окончания в соединительной ткани. Осевой цилиндр контактирует с вспомогательными клетками на значительном протяжении или полностью окружён ими. Свободное нервное окончание, изображённое в нижней части рисунка, имеет билатеральную организацию: в центре расположена эллиптической формы нервная терминаль, покрытая вспомогательными клетками [из Andres KH, 1969]

могут быть различны. Так, вспомогательная клетка может покрывать только часть поверхности осевого цилиндра. Остальная его часть отделена от окружающей соединительной ткани лишь базальной мембраной, обычно расположенной по всей поверхности свободного нервного окончания. Нервная терминаль может формировать пальцевидные выросты, проникающие в окружающую соединительную ткань между вспомогательными клетками.
Билатеральная организация. Некоторые свободные окончания в соединительной ткани имеют билатеральную организацию и напоминают сэндвич: в центре расположена нервная терминаль эллиптической формы, а снаружи - вспомогательные клетки. Полагают, что такая организация необходима для регистрации направления механического смещения.
в. Модальность. Большинство свободных нервных окончаний - механорецепторы. Некоторые окончания в эпидермисе определённо специализированы для регистрации изменений температуры. По настоящее время не идентифицированы т.н. холодовые и тепловые окончания. Имеются также рецепторы, способные определять изменения $\mathrm{pH}, \mathrm{pO}_{2}$ и pCO_{2}.
3. Комплекс клетки Ме́ркеля с нервной терминалью (рис. 8-13). Осязательные клетки Ме́ркеля - округлые или удлинённые клетки, локализованные в эпителии. Они крупнее эпителиоцитов, ядро вытянутое и дольчатое, цитоплазма светлее, в ней нет характерных для кератиноцитов скоплений промежуточных филаментов. Клетки Ме́ркеля соединяются с эпителиоцитами при помощи десмосом и формируют контакт с нервными терминалями.
a. Структура. В цитоплазме равномерно распределены и в умеренном количестве содержатся митохондрии, лизосомы, мультивезикулярные тельца, вакуоли, микрофиламенты. Эндоплазматическая сеть развита сла6о. Встречаются отдельные рибосомы, иногда образующие скопления, гранулы гликогена, меланосомы и центриоли. Между органеллами рассеяно небольшое количество промежуточных филаментов, образующих компактные пучки в пальцевидных выростах. Для клеток Ме́ркеля характерны

Рис. 8-13. Комплекс клетки Ме́ркеля с нервной терминалью. Клетка Ме́ркеля расположена в базальном слое эпидермиса, образует отростки и связывается с кератиноцитами при помощи десмосом. Расширенная нервная терминаль вступает в контакт с клеткой Ме́ркеля. Специфические гранулы расположены в обращеннной к нервной терминали части клетки [из Iggo A, Muir $A R, 1969$]

специфические осмиофильные гранулы размером от 80 до 200 нм. Они сосредоточены преимущественно в обращённых к нервной терминали участках цитоплазмы. На противоположной от ядра стороне расположен хорошо выраженный комплекс Го́льджи, имеющий прямое отношение к формированию специфических гранул.
6. Химия. В клетках Ме́ркеля обнаружены пептиды и нейроноспецифические вещества, что свидетельствует об эндокринной функции клеток Ме́ркеля и позволяет рассматривать их как компонент диффузной нейроэндокринной системы.
(1) Метионин-энкефалин.
(2) VIP.
(3) Относящийся к кальцитониновому гену пептид.
(4) Вещество Р.
(5) Пептид гистидин-изолейцин.
(6) Нейроноспецифическая енолаза.
(7) Хромогранин А.
в. Нервная терминаль. В области контакта с осязательной клеткой терминаль резко расширена, содержит множество митохондрий, нейрофиламентов, микротрубочек, пузырьков гладкой эндоплазматической сети и липидных включений.
r. Функция. Клетка Ме́ркеля может нести позиционную информацию для определения места окончательной локализации терминали периферического отростка чувствительного нейрона в нейрогенезе или при регенерации нервов.
д. Трансформированные клетки Ме́ркеля присутствуют в нейроэндокринных карциномах кожи и трабекулярных карциномах различной локализации (толстая кишка, лёгкие). В подобных опухолях клетки Ме́ркеля сохраняют некоторые специфичные для них свойства. Так, иммуногистохимическая реакция на нейроноспецифическую енолазу остаётся положительной и служит маркёром диагностики опухолей, содержащих трансформированные клетки Ме́ркеля.
4. Тельца Руффи́ни (рис. 8-14) - крупные рецепторы веретеновидной формы длиной до 2 мм и диаметром около 150 мкм, расположены в соединительной ткани кожи и суставов.

Рис. 8-14. Тельце Руффини содержит внутреннюю колбу с густой сетью разветөлённых нервных терминалей и вспомогательными пластинчатыми клетками. Снаружи тельце покрыто соединительнотканной капсулой из нескольких слоёв уплощённых фибробластов. Между внутренней колбой и капсулой находится заполненное жидкостью капсулярное пространство [из Chambers MR et al, 1972]

Сердцевину рецептора (внутренняя колба) образуют ветвящиеся нервные терминали, окружённые пластинчатыми клетками, аналогами шванновских. Нервные терминали булавовидно расширены и содержат скопления митохондрий и везикул. Терминали не покрыты пластинчатыми клетками и отделены базальной мембраной от $\boldsymbol{m} . \boldsymbol{\text { . капсулярно- }}$

Рис. 8-15. Инкапсулированное тельце Пачини состоит из билатерально организованной внутренней колбы и наружной соединительнотканной капсулы. Клетки внутренней колбы образуют отростки, концентрическими полукольцами окружающие чувствительную нервную терминаль. Стрелками указана щель внутренней колбы, проходящая параллельно короткой оси эллипса нервной терминали [из Junqueira $L C$, Carneiro J. 1991]

го пространства, расположенного между капсулой и внутренней колбой. Это достаточно обширное пространство заполнено жидкостью, содержит фибробласты, макрофаги и неориентированные коллагеновые волокна, вплетающиеся во внутреннюю колбу. Капсула тельца состоит из $4-5$ слоёв уплощённых клеток.
5. Тельца Пачиіни (рис. 8-15) обнаружены в соединительной ткани кожи и различных органов, имеют овальную форму, размер до $0,5 \times 1,0$ мм. Внутренняя колба, наружная капсула и терминальное нервное волокно - основные компоненты тельца.
a. Внутренняя колба. Центральная часть внутренней колбы занята одиночным безмиелиновым волокном, ориентированным параллельно длинной оси тельца. Внутренняя колба состоит из нескольких десятков отростчатых клеток, образующих две разделённые щелями полуокружности. По периферии внутренней колбы расположены тела её клеток, в их цитоплазме содержатся большое количество митохондрий, хорошо развитая эндоплазматическая сеть, комплекс Го́льджи, множество мелких вакуолей.
6. Наружная капсула - множество уплощённых фибробластов. Между клетками сосредоточено значительное количество коллагеновых волокон.
в. Терминаль. К тельцу Пачини подходит толстое миелинизированное нервное волокно. Внутри наружной капсулы оно образует несколько перехватов Ранвье́. Подойдя к внутренней колбе рецептора, нервное волокно теряет миелин и переходит в чувствительную нервную терминаль.
г. Дополнительное волокно (рис. 8-16). В 1896 году в Казанской гистологической лаборатории ДА Тимофеев обнаружил в тельцах Пачини дополнительное нервное волокно. Функция этого волокна неясна.
д. Функция. Адекватная механическая стимуляция телец Пачини приводит к появлению рецепторного потенциала в терминальной части нервного окончания. Достигнув критической величины, рецепторный потенциал в первом перехвате Ранвье́ вызывает появление потенциалов действия. Наружная капсула рецептора - фильтр, пропускающий только динамическую составляющую механического воздействия. Рассматриваемый тип чувствительных нервных окончаний относится к фазным, или быстроадаптирующимся рецепторам. Тельца Пачини, как и все тка́невые механорецепторы, первичночувствующие рецепторы. Это означает, что первичный трансформационный процесс происходит в нервной терминали рецептора.

Рис. 8-16. Дополнительное волокно в инкапсулированном рецепторе. Наряду с основным волокном, в состав рецептора входит более тонкое дополнительное волокно. Терминаль основного волокна редко ветвится во внутренней колбе, тогда как дополнительное волокно образует вокруг него густую сеть [из: Тимофеев ДА, 1896]
6. Тельца Ма́йсснера (рис. 8-17) присутствуют в сосочковом слое кожи. Тельце имеет удлинённую форму, снаружи покрыто соединительнотканной капсулой. Сердцевина тельца образована пластинчатыми вспомогательными клетками, чередующимися с расширенными нервными терминалями. В формировании тельца участвует несколько миелиновых волокон.
7. Другие тельца (например, колбы Кра́узе, генитальные тельца, тельца Го́льджи-Маццо́ки) встречаются реже.
8. Рецепторы мышц и суставов
а. Мышечные веретёна (рис. 8-18) - чувствительные воспринимающие приборы скелетной мышцы. Их количество в различных мышцах значительно варьирует, но они присутствуют практически во всех мышцах, за исключением некоторых глазных. Основные структурные элементы мышечного веретена - интрафузальные мышечные волокна, нервные волокна и капсула.
(1) Мышечные волокна. Мышечное веретено содержит от 1 до 10 коротких интрафузальных мышечных волокон. В средней (экваториальной) их части ядра образуют компактное скопление (волокна с ядерной сумкой) или располагаются цепочкой (волокна с ядерной цепочкой).
(2) Нервные волокна. Терминали I_{a}-волокон образуют спираль в пределах экваториальной зоны обоих типов интрафузальных мышечных волокон (первичные, или

Рис. 8-17. Тельце Ма́йсснера окружено соединительнотканной капсулой с вплетёнными в неё коллагеновыми волокнами окружающей соединительной ткани. Подходящие к тельцу нервные волокна теряют миелин и заходят внутрь тельца, где формируют многочисленные терминали, окружённые вспомогательными клетками [из Junqueira LC, Carneiro J, 1991]

аннулоспиральные окончания). Терминали более тонких II-волокон заканчиваются на интрафузальных волокнах в области, расположенной рядом с экваториальной (вторичные окончания, чаще встречаются в волокнах с ядерной цепочкой). Эфферентные А $_{\gamma}$ волокна образуют нервно-мышечные синапсы с интрафузальными волокнами в концевой их части

Рис. 8-18. Мышечное веретено. Интрафузальные мышечные волокна с компактным скоплением ядер волокна с ядерной сумкой, в интрафузальных волокнах с ядерной цепочкой ядра распределены по длине волокна более равномерно. К веретену подходят афферентные и зфферентные нервные волокна. Аннулоспиральные (первичные) сенсорные окончания образованы безмиелиновыми терминалями афферентных I_{α}-волокон в экваториальной зоне обоих типов интрафузальных мышечных волокон Ближе к концам интрафузальных волокон (чаще волокон с ядерной цепочкой) расположены термк ли тонких афферентных II-волокон - вторичные окончания. Эфферентные А-волокна образуют н но-мышечные синапсы с интрафузальными волокнами в концевой их части [из Bucher O, 1980]
(3) Капсула. Комплекс интрафузальных волокон с нервными терминалями окружён многослойной капсулой, наружные слои которой являются производными периневрия, а внутренние рассматриваются как аналоги эндоневрия.
б. Сухожильные органы Го́льджи (рис. 8-19) расположены в концевой части сухожилия на границе с мышцей, а также в связках капсулы суставов. Рецептор имеет веретеновидную форму и окружён капсулой, состоящей из нескольких слоёв плоских клеток. Капсула рецептора - продолжение периневрия и содержит капилляры. В образовании сухожильного органа Го́льджи участвуют терминали афферентных миелиновых волокон, они ветвятся среди пучков спиралевидных коллагеновых волокон, расположенных в заполненном жидкостью пространстве.
в. Чувствительные нервные окончания в капсуле суставов - важный элемент проприоцептивной системы организма.
(1) Тельца Руффиіни (рис. 8-14) расположены в периферических участках капсулы.
(2) Пластинчатые пачи́ниподобные тельца - сенсорные рецепторы существенно меньших размеров, чем тельца Пачйни.
(3) Свободные нервные окончания - терминали тонких миелиновых волокон и, наконец, терминали безмиелиновых волокон, среди которых, по-видимому, присутствуют и болевые рецепторы. Широко представлены во всех компонентах сустава, но наибольшей плотности достигают в мениске и суставном диске.

Б. Двигательные нервные окончания

1. Нервно-мышечный синапс (рис. 8-20, см. также главу 7 I Г 1). Двигательная нервная терминаль диаметром $1-1,5$ мкм образует пресинаптическую область нервно-мышечного синапса, которая (в отличие от претерминальной части аксона) не содержит нейрофиламентов и микротрубочек. В пресинаптической области в большом количестве присутствуют синаптические пузырьки и митохондрии. Для постсинаптической области характерно наличие крупных митохондрий с хорошо развитыми кристами и большого количества рибосом (существенно больше, чем в других областях саркоплазмы).

Рис. 8-19. Сухожильный орган Го́льджи. Рецептор окружён капсулой, через которую в средней части органа проходит миелиновое нервное волокно, образующее терминальное сплетение среди коллагеновых волокон [из Schoulzze TW, Swett JE, 1972]
a. Пресинаптическая мембрана - специализированная часть аксолеммы нервной терминали. В пресинаптической мембране выявлены т.н. активные зоны - участки утолщення мембраны, имеющие прямое отношение к секреции медиатора. Рядом с активными зонами в пресинаптической мембране находятся углубления, количество которых коррелирует с уровнем секреции ацетилхолина. Пресинаптическая мембрана содержит потенциалзависимые Ca^{2+}-каналы. При деполяризации мембраны каналы открываются, и ионы Ca^{2+} входят в терминаль; запуская секрецию квантов ацетилхолина.
6. Синаптические пузырьки присутствуют практически в любой области нервной терминали, но в непосредственной близости от пресинаптической мембраны они образуют выраженное скопление. Размеры пузырьков варьируют, их средний

Рис. 8-20. Нервно-мышечный синапс. Пресинаптическая часть образована терминалью аксона мотонейрона и содержит скопление синаптических пузырьков вблизи пресинаптической мембраны, а также митохондрии. Постсинаптические складки увеличивают площадь поверхности постсинаптической мембраны. В синаптической щели находится синаптическая базальная мембрана (продолжение базальной мембраны мышечного волокна), она заходит в постсннаптические складки. В синаптической щели также находятся молекулы ацетилхолинэстеразы. Этот фермент расщепляет ацетилхолин и устраняет эффект деполяризующего сигнала на мышечное волокно [из Bloom W, Fawcett DW, 1968]

диаметр равен 50 нм. В холинергических синапсах светлые синаптические пузырьки содержат ацетилхолин. Часть пузырьков находится в тесном контакте с пресинаптической мембраной.
в. Постсинаптическая мембрана - специализированная часть плазмолеммы мышечного волокна - образует многочисленные инвагинации, от которых на глубину $0,5-1,0$ мкм отходят постсинаптические складки, за счёт чего существенно увеличивается площадь мембраны. В постсинаптическую мембрану встроены н-холинорецепторы, их концентрация достигает $20-30$ тысяч на 1 мкм².
r. Внесинаптические холинорецепторы. Холинорецепторы присутствуют также в мембране мышечного волокна вне синапса, но здесь их концентрация на порядок меньше, чем в постсинаптической мембране.
д. Эмбриогенез и регенерация. В развивающемся мышечном волокне холинорецепторы равномерно распределены в мембране волокна. Переключение с эмбрионального на дефинитивный тип рецепторов происходит при формировании синапсов. В денервированной мышце исчезают дефинитивные холинорецепторы, но чувствительность к ацетилхолину возрастает, что свлзано с интенсивным синтезом и включением в мембрану мышечных волокон большого количества холинорецепторов эмбрионального типа. При регенерации нервного волокна и восстановлении его контакта с мышечным волокном включается синтез холинорецепторов дефинитивного типа, встраивающихся в постсинаптическую мембрану.
е. Базальная мембрана. Через синаптическую щель проходит синаптическая базальная мембрана. Она содержит.несколько сигнальных белков (агрин, S -ламинин и др.) и играет важную роль в регуляции дифференцировки пре- и постсинаптической структуры. Синаптическая базальная мембрана удерживает в области синапса терминаль аксона, контролирует расположение холинорецепторов в виде скоплений в постсинаптической мембране. Сигнальные молекулы синаптической базальной мембраны служат метками, при помощи которых регенерирующий аксон мотонейрона находит синаптическую область на поверхности мышечного волокна.
ж. Оболочка. Снаружи нервная терминаль покрыта шванновской клеткой.
2. Двигательные нервные окончания среди ГМК (см. главу 7 III).

IV. вегеТАТИВНАЯ НЕРВНАЯ СИСТЕМА

А. Генез (рис. 8-21). Нейроны парасимпатического отдела происходят из нервного гребня на уровне 1-7 сомитов (отдел блуждающего нерва) и каудальнее 28 сомита (пояснично-крестцовый отдел). Нейроны симпатического отдела и хромаффинные клетки мозгового вещества надпочечников развиваются из нервного гребня на уровне сомитов 8-28.
Б. План строения. В общем виде организация вегетативной нервной системы проиллюстрирована на рис. 8-22, а анатомические связи симпатического отдела - на рис. 8-23. Наиболее наглядно строение вегетативной нервной системы можно проследить на примере вегетативной иннервации пищеварительного тракта. В стенке пищеварительной трубки имеются нервные сплетения (подслизистое - Майсснера, межмышечное - Ауэрбаха), представленные густой сетью нервных волокон, содержащей вегетативные ганглии. В последних сосредоточены перикарионы вегетативных нейронов. Количество нейронов в ганглии варьирует от нескольких до сотен. Совокупность нервных элементов пищеварительного тракта составляет энтеральную нервную систему.
В. Вегетативные нейроны. Первые данные о гетерогенности нейронов пищеварительного тракта получил До́zель. Основываясь на форме клеток и характере ветвления их отростков после окраски ткани метиленовым синим, Догель выделил три типа нейронов.

Рис. 8-21. Развитие вегетативной нервной системы наиболее детально изучено у птиц. Клетки нервного гребня на уровне $1-7$ сомитов (отдел вагуса) и каудальнее 28 сомита (пояснично-крестцовый отдел) - предшественники нейронов парасимпатического отдела. Нервный гребень на уровне 1-7 сомитов служит источником вегетативных нейронов для пищеварительной трубки на всём её протяжении (звёздочки). Клетки нервного гребня каудальнее 28 сомита дифференцируются в вегетативные нейроны, иннервирующие каудальную треть пищеварительной трубки (кружки). Нейроны симпатического отдела развиваются из нервного гребня на уровне 8-28 сомитов. Хромаффинные клетки мозгового вещества надпочечннков происходят из нервного гребня на уровне сомитов 18-24 [из LeDouarin N. Teillet MA, 1974]

1. Классификация

а. Клетки Догеля I типа. Перикарионы этих нейронов имеют уплощённую форму, длинный аксон и большое количество коротких дендритов с расширенным основанием.
б. II тип. Нейроны II типа имеют перикарион овальной формы с гладкой поверхностью и длинные отростки.
в. III тип. Перикарионы нейронов III типа имеют овальную или неправильную форму, один длинный аксон и большое количество сравнительно коротких дендритов различной длины.
2. Связи. Нейроны I типа образуют синапсы с ГМК и с нейронами II типа. Догель предположил, что нейроны I типа - двигательные, а нейроны II типа - чувствительные. Отростки нейронов III типа не только вступают в контакт с нейронами соседних ганглиев, но и проникают в слизистую и подслизистую оболочки.
3. Нейромедиаторы и модуляторы. Вегетативные нейроны синтезируют и секретируют различные биологически активные вещества (нейромедиаторы и модуляторы).

Парасимпатический отдел

Симпатический отдеп

Рис. 8-22. Вегетативная нервная система. [из DeMyer W, 1988]
a. Нейромедиаторы. Только ацетилхолин, норадреналин и серотонин удовлетворяют всем требованиям, предъявляемым к нейромедиаторам. Нейромедиаторы вызывают сокращение / расслабление ГМК, возбуждение / торможение нейронов энтеральной нервной системы, усиление / подавление секреции экзокринных желёз и энтероэндокринных клеток. Относительно функции γ-аминомасляной кислоты, вещества P и VIP накапливаются данные как о нейромедиаторах энтеральной нервной системы.
Несколько нейромедиаторов в одном нейроне. В некоторых нейронах ганглиев межмышечного сплетения совместно присутствуют серотонин и вещество Р. Известны и другие комбинации.
6. Модуляторы. Действие модуляторов на клетки-мишени облегчает или, наоборот, затрудняет влияние нейромедиатора на эти же клетки.
Несколько модуляторов в одном нейроне. В нейронах энтеральной нервной системы может присутствовать несколько модуляторов. Так, в нейронах III типа,

Рис. 8-23. Симпатический отдел вегетативной нервной системы. Перикарионы первого нейрона расположены в боковых столбах спинного мозга. Их аксоны проходят в составе передних корешков и белой соединительной ветви и заканчиваются на перикарионах второго нейрона в паравертебральных ганглиях симпатической цепочки, превертебральных ганглиях и ганглиях (терминальных), расположенных вблизи иннервируемых ими органов. Аксоны второго нейрона паравертебральных, превертебральных и терминальных ганглиев заканчиваются во внутренних органах, коже, стенке кровеносных сосудов. Аксоны некоторых нейронов паравертебральных ганглиев проходят через серую соединительную ветвь [из Sadler TW, 1990]

отростки которых уходят в слизистую и подслизистую оболочки, кроме ацетилхолина, присутствуют нейропептид Y, соматостатин, холецистокинин, относящийся к кальцитониновому гену пептид.
в. Пример. Нейроны межмышечного нервного сплетения (сплетение Ауэрбаха) синтезируют и секретируют различные нейромедиаторы и модуляторы:
(1) ацетилхолин,
(2) VIP,
(3) вещество P,
(4) γ-аминомасляная кислота,
(5) динорфин,
(6) относящийся к кальцитониновому гену пептид,
(7) нейропептид Y,
(8) норадреналин,
(9) пептид гистидин-изолейцин,
(10) серотонин,
(11) соматостатин,
(12) холецистокинин,
(13) энкефалины.
г. Варикозные расширения. Аксон постганглионарного вегетативного нейрона образует многочисленные варикозные расширения - содержащие синаптические пузырьки локальные утолщения. Эти утолщения - места секреции нейромедиатора.

ПРЕПАРАТЫ

A. Нейроны

1. Мультиполярные нейроны

a. Поперечный срез спинного мозга, импрегнированный нитратом серебра (рис. 8-24). В сером веществе спинного мозга, кроме клеток нейроглии, находятся мультиполярные нервные клетки, особенно крупные в передних рогах. Это двигательные нейроны. Так как мы имеем дело со срезом, то видны только наиболее толстые, ближайшие к клетке участки отростков. Ядро нейрона имеет вид светлого пузырька. Иногда видно ядрышко. В нейроплазме располагается сеть тонких тёмноокрашенных нитей нейрофибрилл.
б. Поперечный срез спинного мозга, окрашенный на тигроидное вещество (рис. 8-25). В перикарионах мультиполярных нейронов присутствует тигроидное вещество в виде многочисленных глыбок. Часть перикариона, обращённая к аксону, лишена тигроидного вещества. Это аксонный холмик. Аксон также не содержит тигроидного вещества.
2. Псевдоуниполярныс нейроны спинномозговых узлов (рис. 8-26). Узел покрыт соединительнотканной капсулой. Внутри узла находятся группы нервных клеток, между которыми проходят пучки миелиновых нервных волокон. Тела псевдоуниполярных нейронов имеют округлую форму. Местами можно видеть толстый отросток (иногда Т-образно ветвящийся), отходящий от тела клетки. Тела нервных клеток окружены клетками-сателлитами. Популяция нейронов ганглия неоднородна. Нейроны с небольшим перикарионом содержат вещество P, соматостатин и холецистокинин, половина нейронов - глутамин. От 35 до 65% небольших нейронов содержат одновременно вещество P и глутамин. Оба эти нейромедиатора секретируются из одних и тех же терминалей в пределах пластинки II серого вещества спинного мозга.

Б. Проводники

1. Миелиновые нервные волокна (расщеплённый препарат седалищного нерва, рис. 8-27) имеют вид длинных неветвящихся цилиндров, окружённых миелиновой оболочкой. Миелин интенсивно окрашен тетраоксидом осмия. Миелиновая оболочка прерывается перетяжками, или перехватами Ранвье́, разбивающими миелиновый футляр осевого цилиндра на сегменты. Каждому сегменту соответствует одна шванновская клетка. В миелиновой оболочке имеются светлые косонаправленные полосы - насечки Шмидта-Лантермана.

Рис. 8-24. Мультиполярный нейрон спинного мозга. Крупное ядро расположено в теле клетки центрально. Хорошо видно ядрышко. В цитоплазме перикариона различимы нейрофибриллы - скопления элементов цитоскелета. В перикарионе они проходят в различных направлениях, а в отростках имеют направленную ориентацию [из Stöhr P, Möllendorf W, 1933]

Рис. 8-25. Тигроидное вещество. Глыбки тигроидного вещества (субстанции Ниссля) располагаются исключительно в перикарионе и начальных отделах дендритов. Свободный от тигроидного вещества участок перикариона просматривается в том месте, где начинается аксон. Этот участок называют аксонным холмиком [из Voss H, 1957]

Рис. 8-26. Псевдоуниполярные нейроны спинномозгового узла. Сферической формы перикарионы содержат ядра. От тела клетки отходит сравнительно толстый отросток, который на некотором расстоянии от перикариона Т-образно разветвляется на центральную и периферическую ветви. Перикарион окружён клетками небольшой величины - клет-ками-сателлитами [из Voss $H, 1957$]

Рис. 8-27. Миелиновые волоква. В центральной части волокна в виде светлой ленты проходит осевой цилиндр. Снаружи к нему прилегает миелиновая оболочка, образованная шванновской клеткой. Проходящие под углом к осевому цилиндру светлые линии в миелиновой оболочке называют насечками ІІІмидта-Лантермана. Участок волокна, соответствующий месту контакта соседних шванновских клеток, - перехват Ранвье [из Voss H, 1957]
2. Нервный ствол в поперечном разрезе (рис. 8-28). Нервный ствол состоит из миелиновых и безмиелиновых нервных волокон и соединительнотканных оболочек. Миелиновые нервные волокна имеют вид округлых профилей, центральная их часть занята осевым цилиндром. Миелиновая оболочка окрашена слабо, шванновская оболочка в виде тонкой линии очерчивает снаружи миелиновую оболочку. Нервные волокна собираются в пучки разного диаметра, окружённые периневрием; от периневрия между нервными волокнами отходят нежные прослойки соединительной ткани - эндоневрий. Весь нерв с поверхности одет соединительнотканной оболочкой - эпиневрием.

В. Нервные окончания

1. Двигательное нервное окончание (нервно-мышечный синапс, рис. 8-29). К параллельно расположенным мышечным волокнам подходят пучки миелиновых нервных волокон, импрегнированных нитратом серебра. Пучки постепенно распадаются на отдельные тонкие волокна, подходят к поперечнополосатым мышечным волокнам, где оканчиваются нервно-мышечными синапсами, или двигательными бляшками. В области контакта терминалей нервного окончания с сарколеммой мышечного волокна образуется т.н. подошва окончания, образованная, во-первых, за счёт сарколеммы и саркоплазмы, содержащей ядра мышечного волокна (поперечная исчерченность отсутствует), и, во-вторых, за счёт скопления в этой области шванновских клеток.
2. Свободное нервное окончание (рис. 8-30). Миелиновое нервное волокно теряет миелин и образует кустик. В зависимости от количества и протяжённости ветвей, кустиковидные рецепторы могут быть компактными или распространёнными.
3. Механорецептор - тельце Пачини (рис. 8-31). В тельце различают наружную слоистую капсулу и внутреннюю колбу. Наружная капсула состоит из концентрически расположенных уплощённых фибробластов. Внутренняя колба представлена специальными клетками нейроэктодермального происхождения. В центре внутренней колбы проходит осевой цилиндр.

Рис. 8-28. Нервный ствол в поперечном разрезе. Нервные волокна, окружённые эндоневрием, образуют пучки. Каж. дый пучок окружён соединительнотканной оболочкой - периневрием. Соединительная ткань, покрывающая нерв с поверхности, - эпиневрий [из Voss H, 1957]

Рис. 8-30. Свободное нервное охончание. Тонкие ветвящиеся терминали афферентного волокна залегают среди клеточных элементов иннервируемой ткани [по Шмелёеой ГН, 1954]

Рис. 8-31. Инкапсулированный рецептор - тельце Пачини. Центральную часть рецептора занимает внутренняя колба, по всей длине которой проходит чувствительная нервная терминаль. Часть миелинового волокна и вся внутренняя колба окружены многослойной соединительнотканной капсулой [из Quilliam TA, Sato M, 1955]
4. Мышечное веретено (рис. 8-32). Одно или несколько мышечных волокон окружены тонкой капсулой, имеющей веретеновидную форму. Мышечные волокна, лежащие под капсулой, называются интрафузальными. Миелиновые нервные волокна, проникая под капсулу, оплетают интрафузальные мышечные волокна в виде спирали. На концах интрафузальных мышечных волокон располагаются небольшие двигательные бляшки.

Рис. 8.32. Средняя часть двигатедьного веретена содержит интрафузальные мышечные волокна, к которым подходят двигательные и чувствительные нервные волокна. Терминали чувствительных волокон образуют спиральные структуры или ветвятся на поверхности интрафузальных волокон. Двигательные нервные волокна формируют нервно-мышечные синапсы [из Matthews PB, 1964]

ВОПРОСЫ

Подснение. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждеиия, наиболее соответствующее каждому случаю.

1. В эксперименте на эмбрионах удалили нервный гребень. Нарушено развитие всех структур, КРОМЕ:
(A) чувствительных нейронов спинномозговых узлов
(Б) нейронов симпатических ганглиев
(B) хромаффинных клеток
(Г) меланоцитов
(Д) мотонейронов спинного мозга
2. Клетки контактируют друг с другом и другими млетками ЦНС, содержат крупное мдро и промежуточные филаменты, состоящие из глиального фибриллярного кислого белка. О какой клетке идёт речь?
(A) Олигодендроцит
(Б) Микроглия
(B) Астроцит
(Г) Нейрон
(Д) Шванновская клетка
3. По аксону транспортируется всё, KPOME:
(A) рибосом
(Б) везикул
(B) нейромедиаторов
(Г) митохондрий
(Д) белковых молекул
4. В аксоне присутствует всё, KPOME:
(A) митохондрий
(Б) микротрубочек
(B) нейрофиламентов
(Г) тигроидного вещества
(Д) везикул
5. У мышей с мутацней јimpy причина дрожания и судорог - нарушение миелинизации в центральной, но не в перифернческой нервной системе. С нарушением функции каких клеток связан данный дефект?
(A) Олигодендроцит
(Б) Астроцит плазматический
(B) Астроцит волокнистый
(Г) Микроглия
(Д) Шванновская клетка
6. Миелиновая оболочка периферических нервных волокон образована:
(A) уплотнённым межклеточным веществом, содержащим белки и фосфолипиды
(Б) плазматической мембраной шванновских клеток
(B) специализированной частью периневрия
(Г) элементами цитоскелета шванновских клеток
(Д) спирально закрученной мембраной аксона
7. После травматического сдавления конечности в её нервном стволе найдена дегенерация нервных волокон. Имеются все проявления, КРОМЕ:
(A) распада окончаний нервных волокон
(Б) тигролиза
(B) разрушения миелина
(Г) гибели шванновских клеток в дистальном отрезке
(Д) фагоцитоза фрагментов повреждённых нервных волокон
8. Медиатор в нервно-мышечном синапсе скелетной мышщы:
(A) адреналин
(Б) норадреналин
(B) дофамин
(Г) ацетилхолин
(Д) глицин
9. Какие клетки в эпидермисе кожи вместе с терминалями афферентных волокон образуют тактильные рецепторы?
(A) Кератиноциты
(Б) Клетки Ла́нгерханса
(В) Клетки Ме́ркеля
(Г) Меланоциты
(Д) Клетки-сателлиты
10. Назовите чувствительное нервное окончание, ответственное за термовосприятие:
(A) пластинчатое тельце Пачини
(Б) осязательное тельце Майсснера
(B) сухожильный орган Го́льджи
(Г) свободное нервное окончание
(Д) тельце Руффйни

Подснение. Каждый из нижеприведённых и пронумерованных вопросов 11-23 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:

А - если правильны ответы 1,2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны ответы $1,2,3$ и 4
11. Производные нервного гребня:
(1) нейроны ресничного ганглия
(2) нейроны спинномозговых узлов
(3) нейроны стенки желудка
(4) нейроны спинного мозга
12. Производные нервной трубки:
(1) псевдоуниполярные нейроны спинномозговых узлов
(2) пирамидные нейроны коры больших полушарий головного мозга
(3) меланоциты
(4) эпендимоциты
13. Функции астроцитов:
(1) выделяют вещества, поддерживающие рост аксонов
(2) участвуют в фагоцитозе
(3) участвуют в метаболизме глутамина
(4) изолируют рецептивные поверхности нейронов

14. Для клеток микроглии характерно:

(1) многочисленные лизосомы
(2) участие в иммунном ответе в мозге
(3) способность к обновленню
(4) участие в транспорте глюкозы

15. Элементы, присутствующие в аксоне:

(1) митохондрии
(2) гранулярная эндоплазматическая сеть
(3) промежуточные филаменты
(4) цистерны комплекса Го́льджи
16. В мнелиновом волокне ЦНС различают:
(1) перехват Ранвье́
(2) осевой цилиндр
(3) мезаксон
(4) шванновские клетки
17. Какие клетки синтезируют белки миелина?
(1) Шванновские
(2) Нейроны
(3) Олигодендроциты
(4) Астроциты
18. Структуры периферического нерва:
(I) эндоневрий
(2) кровеносные сосуды
(3) фнбробласты
(4) нервы нервов
19. Периневрий:
(1) тонкий слой соединительной ткани вокруг каждого нервного волокна
(2) содержит клетки, связанные плотными контактами
(3) ретикулярная ткань вокруг пучков нервных волокон
(4) контролирует проницаемость и поддерживает гомеостаз эндоневрия
20. Какие процессы происходят после локальной компрессии периферического нерва?
(1) Разрушение осевых цилиндров и распад миелина на всём протяжении периферического отрезка
(2) Дегенерация нервных волокон на небольшом протяжении центрального отрезка
(3) Прорастание аксонов из центрального отрезка в периферический
(4) Ориентация регенерирующих аксонов по цепочкам из щванновских клеток
21. Укажите нервные окончания, ответственные за механорецепторную функцию:
(1) тельце Пачйни
(2) сухожильный орган Го́льджси
(3) мышечное веретено
(4) комплекс клетки Ме́ркеля с нервной терминалью
22. Какие из перечнсленных нервных окончаний относят к несвободным?
(1) Тельце Пачики
(2) Тельце Майсснера
(3) Тельце Руффиіни
(4) Комплекс клетки Мерркеля с нервной терминалью

23. Нервно-мышечный синапс:

(1) ацетилхолин - содержимое светлых синаптических пузырьков
(2) постсинаптическая мембрана - область наибольшего скопления холинорецепторов
(3) нервная терминаль окружена шванновской клеткой
(4) синаптические везикулы выходят в синаптическую щель

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - Д

Предшественницы всех клеток ЦНС - вентрикулярные (матричные) клетки нервной трубки. Эти клетки активно размножаются, что сопровождается циклическим перемещением их ядер в пределах эпе́ндимного слоя и изменением формы клеток. Часть вентрикулярных клеток дифференцируется в нейробласты, из которых в дальнейшем развиваются нейроны, в т.ч. и мотонейроны спинного мозга. Из нервного гребня развиваются чувствительные нейроны спинномозговых узлов, вегетативные нейроны, хромаффинные клетки. Нейроны симпатического отдела и хромаффинные клетки мозгового вещества надпочечников развиваются из нервного гребня на уровне сомитов $8-28$. Нейроны парасимпатического отдела происходят из нервного гребня на уровне $1-7$ сомитов (отдел блуждающего нерва) и каудальнее 28 сомита (пояснично-крестцовый отдел). Из нервного гребня в эпидермис кожи мигрируют предшественники меланоцитов.

2. Правильный ответ - В

Глиальный фибриллярный кислый белок промежуточных филаментов - маркёр отростчатых клеток макроглии - астроцитов. Клетки содержат крупное ядро. Отходящие в различных направлениях отростки оплетают нейроны, сосуды мозга, клетки (эпе́ндимы) желудочков мозга, образуя расширение в виде концевой ножки. Другой представитель макроглии - олигодендроцит, его главная функция - образование миелина. Поэтому маркёрами олигодендроцитов могут быть и белки миелина. Протеолипидный белок - основной компонент миелина в ЦНС. Для олигодендроцитов специфичен ещё один белок - так называемый гликопротеин миелин-олигодендроцитов. Он присутствует на поверхности миелинобразующих олигодендроцитов и наружных мембран миелиновой оболочки в ЦНС. При этом следует помнить, что подобнье белки синтезирует другая миелинобразующая клетка - шванновская клетка периферической нервной системы. Белок миелина P_{0} и небольшой щелочной белок миелина P_{2} экспрессируются только шванновскими клетками. Другие маркёры шванновских клеток - белок S100b, белок щелевого контакта коннексин-32. При одной из форм болезни Шарко́-Мари́-Ту́та шва́нновские клетки синтезируют и содержат дефектный коннексин32. Маркёры нейронов - нейромедиаторы и ферменты, участвующие в их метаболизме (ацетилхолинэстераза, тирозин гидроксилаза), белок GAP-43, белок 9.5 и другие. Сложнее с маркёрами микроглии. Клетки имеют малые размеры, неправильную форму, многочисленные ветвящиеся отростки. Их функция в интактном мозге неясна. При различных патологических условиях клетки микроглии экспрессируют Аг МНС II. В ответ на повреждение мозга клетки микроглии быстро размножаются и активируются [митогены - колониестимулирующий фактор макрофагов (M-CSF), колониестимулирующий фактор гранулоцитов и макрофагов (GM-CSF) и ИЛ-3].

3. Правильный ответ - А

В аксоне нет гранулярной эндоплазматической сети и, как правило, рибосом. По аксону при участии микротрубочек транспортируются различные вещества, включая белки и нейромедиаторы. Так, в аксонах адренергических и холинергических нейронов обнаружен проксимо-дистальный (антероградный) транспорт молекул нейромедиаторов. Однако, он полностью не обеспечивает секрецию нейромедиаторов из аксонов. Нейроны обоих типов способны синтезировать de поvо норадреналин н ацетилхолин в непосредственной близости от мест секреции нейромедиаторов, т.е. в варикозных расширениях. Такие органеллы, как митохондрии и везикулы, также транспортируются по аксону. Различают быстрый ($100-1000$ мм / сутки) и медленный аксонный транспорт ($1-10$ мм / сутки), а также антероградный (транспорт от перикариона) и ретроградный (к перикариону). Основной материал антероградного транспорта - белки, синтезированные в перикарионе (например, белки ионных каналов, ферменты синтеза нейромедиаторов). Фактор роста нервов (NGF) захватывается терминалями отростков нейрона и транспортируется ретроградно в перикарион. Транспорт органелл по аксону вдоль микротрубочек обеспечивает тубулин-кинезиновый хемомеханический преобразователь.

4. Правильный ответ - Г

Тигроидное вещество (гранулярная эндоплазматическая сеть) в аксоне отсутствует. Синтез белка, в первую очередь для многочисленных и часто очень длинных отростков нейрона, сосредоточен в

относительно небольшом объёме перикариона. Распыление тигроидного вещества отражает дистрофические изменения при нарушении целостности нейрона (например, при сдавлении или перерезке нерва). В аксоне присутствуют органеллы (митохондрии, транспортные пузырьки), элементы цитоскелета (микротрубочки, нейрофиламенты, микрофиламенты). Нейрофиламенты относят к промежуточным нитям цитоскелета, они состоят из трёх белков (п $_{\text {t }} 68,125$ и 200 кД, т.н. нейрофиламентный триплет).

Б. Правильный ответ - А

В X-хромосоме мышей линии јітру опнсана мутация, проявляюшаяся дрожанием и судорогами. Мутация затрагивает ген, кодирующий синтез белка липофилина - основного компонента миелина в ЦНС. При мутации гена у мышей линии јітру развивается демиелинизация ЦНС. Поскольку вызванная этой мутацией демиелиннзация наблюдается в центральной, но не в периферической нервной системе, полагают, что мутация нарушает функцию олигодендроцитов - клеток, образующих миелин в ЦНС.

6. Правильный ответ - Б

Миелиновая оболочка, компактная структура из мембран, спирально закрученных вокруг аксонов, образуется путём концентрического наслоения плазмолеммы шванновских клеток. Каждая шва́нновская клетка миелинизирует один аксон. По мере удлинения мезаксона происходит спиральное наслаивание мембраны шванновской клетки. При этом её цитоплазма смещается на периферию. Миелин прерывается через регулярные промежутки - перехваты Ранвье́, границы между двумя соседними шванновскими клетками. В миелине периферических нервов имеются небольшие просветления - насечки ІІмидта-Лантермана. Снаружи от миелина располагаются тонкий слой цитопазмы шванновской клетки и её ядро.

7. Правильный ответ - Г

При повреждении нервного ствола в результате травматического сдавления конечности происходит разрушение нервных волокон в дистальном отрезке, включая нервные терминали. Фрагменты осевых цилиндров и миелина фагоцитируются макрофагами и частично шванновскими клетками, которье остаются на своих местах в виде бюнгнеровских лент. В дальнейшем эти шванновские клетки направляют рост регенерирующих нервных волокон из проксимального отрезка в дистальный. В перикарионах нейронов, отростки которых проходят в составе повреждённого нервного ствола, гранулярная эндоплазматическая сеть перестраивается, что проявляется в виде распыления тигроидного вещества - тигролиза.

8. Правильный ответ - Г

Ацетилхолин - нейромедиатор в нервно-мышечном синапсе в скелетной мышце. Катехоловые амины норадреналин и адреналин накапливаются в хромаффинных и МИФ-клетках. Норадреналин секретируется из большинства постганглионарных симпатических волокон и является нейромедиатором многих нейронов ЦНС (например, гипоталамус, голубоватое место). Дофамин - нейромедиатор в окончаниях некоторых аксонов периферических нервов и многих нейронов ЦНС (чёрное вещество, средний мозг, гипоталамус). При болезни Па́ркинсона дегенерация нейронов чёрной субстанции (substantia nigra) приводит к дефициту дофамина в стриатуме и нарушениям в центрах и путях двигательного контроля. Тормозной нейромедиатор глицин присутствует в некоторых нейронах сетчатки и мозга (например, во вставочных нейронах спинного мозга).

9. Правильный ответ - В

Клетки Ме́ркеля в эпидермисе кожи вместе с терминалями чувствительных нервных волокон образуют осязательные рецепторные комплексы.

10. Правильный ответ - Г

Чувствительные нервные окончания, ответственные за термовосприятие, имеют морфологию свободных нервных окончаний. Тельца Пачини, Майсснера, Руффини и сухожильный орган Го́льджи относятся к несвободным нервным окончаниям, они окружены соединительнотканной капсулой, это механорецепторы.

11. Правильный ответ - A

Холинергические нейроны ресничного ганглия, чувствительные нейроны спинномозговых узлов, нейроны вегетативной нервной системы стенки пищеварительного тракта происходят из нервного гребня. Интрамуральные холинергические нейроны парасимпатического отдела пищеварительного тракта происходят из нервного гребня на уровне 1-7 сомитов (отдел блуждающего нерва) и каудальнее 28 сомита (пояснично-крестцовый отдел). Пример нарушения миграции клеток нервного гре6ня - болезнь Хи́pиспрунга. Из клеток нервного гребня и их малодифференцированных клеточных потомков в составе ганглиев симпатического отдела нервной системы, мозгового вещества надпочечников и параганглиев возникает нейробластома - злокачественное новообразование у детей. Нейроны спинного мозга развиваются из вентрикулярных (матричных) клеток нервной трубки.

12. Правильный ответ - В

Все нейроны ЦНС и глиальные клетки, в т.ч. и эпендимоциты, развиваются из вентрикулярных (матричных) клеток нервной трубки. Закончившие пролиферацию клетки (нейробласты), а также потенциально способные к пролиферации глиобласты выселяются в плащевой слой. Часть вентри. кулярных клеток остаётся in situ - будущая эпе́ндима. Псевдоуниполярные чувствительные нейроны спинномозговых узлов и меланоциты происходят из нервного гребня.

13. Правильный ответ - Д

Астроциты синтезируют полипептидные факторы, поддерживающие рост аксонов и выживание нейронов: фактор роста нервов (NGF), компоненты межклеточного матрикса ламинин и фибронектин. Астроциты могут экспрессировать Ar MHC II, принимать участие в фагоцитозе. Астроциты участвуют в метаболизме глутаминовой и γ-аминомасляной кислот - соответственно возбуждающего и тормозного нейромедиаторов ЦНС. После высвобождения этих нейромедиаторов в синаптическую щель часть молекул поступает в астроциты, где превращается в глутамин. Астроциты изолируют рецептивные поверхности нейронов, отделяют нейроны от соединительной ткани. Астроцитарные ножки почти полностью покрывают капилляры мозга и транспортируют метаболиты в нервную ткань, а продукты метаболизма - из мозга в кровь. Отростки астроцитов служат проводящими путями для направленной миграции недифференцированных нейронов в коре мозжечка, контролируют врастание аксонов в зрительный нерв.

14. Правильный ответ - A

Микроглия - обновляющаяся клеточная популяция. Митогены для микроглии - колониестимулирующий фактор макрофагов (M-CSF), колониестимулирующий фактор гранулоцитов и макрофагов (GM-CSF) и ИЛ-3. Клетки микроглии имеют небольшие размеры, неправильную форму, многочисленные ветвящиеся отростки, ядро с крупными глыбками хроматина, множество лизосом, гранулы липофусцина и плотные пластинчатые тельца. Функция в интактном мозге неясна. В ответ на повреждения мозга клетки микроглии быстро размножаются и активируются. Активированные клетки микроглии экспрессируют Аг МНС II и участвуют в иммунном ответе в мозге. Фагоцитарная активность микроглии наблюдается в различных патологических условиях (например, при рассеянном склерозе и аутоиммунном энцефалите). Транспорт веществ из крови в мозг осуществляют астроциты.

15. Правильный ответ - Б

В аксоне присутствуют митохондрин, вырабатывающие АТФ для обеспечения проведения импульсов, аксонного транспорта, роста аксона и перестройки его связей с иннервируемыми структурами. Цитоскелет аксона: микротрубочки, промежуточные филаменты (нейрофиламенты) и микрофиламенты. Все они ориентированы упорядоченно. Хорошо развитая в нейронах гранулярная эндоплазматическая сеть, активно синтезирующая белок, а также комплекс Го́льджи расположены исключительно в перикарионе.

16. Правильный ответ - A

Миелиновые волокна в ЦНС и на периферии содержат осевой цилиндр, мезаксон, перехваты Ранвье́. Осевой цилиндр - отросток нейрона (аксон, дендрит). Мезаксон - сдвоенные мембраны олигодендроцита или шванновской клетки. При образовании миелина происходит спиральное наслаивание мембран

по мере удлинения мезаксона. Перехваты Ранвье́ в волокнах центральной и периферической нервной снстемы имеют различную структуру. Миелинобразующие клетки ЦНС (олигодендроциты) в области перехвата не вступают контакт с соседней клеткой; между ними образуется зазор с обнажённым осевым цилиндром, отсутствующий в перехватах миелиновых волокон периферического нерва. Шванновские клетки входят в состав миелиновых волокон периферической нервной системы.

17. Правильныв: ответ - Б

Белки миелина в волокнах периферической нервной системы вырабатывают шванновские клетки, а в ЦНС - олигодендроциты. ПІванновские клетки: белок миелина P_{0} - интегральный мембранный гликопротеин, предположительно связывающий соседние ламеллы и таким образом стабилизирующий структуру миелина; это главный структурный белок миелина периферической нервной системы, на его долю приходится более 50% массы всех белков миелина периферического нерва. Белок миелина P_{2} - небольшой щелочной белок миелина периферического нерва, связывающий жирные кислоты. Олигодендроциты: основной белок миелина; липофилин (протеолипидный белок) вместе с основным белком миелина составляет более 80% массы всех белков миелина ЦНС; гликопротеин миелин-олигодендроцитов присутствует на поверхности миелинобразующих олигодендроцитов и наружных мембран миелиновой оболочки. Белок, связывающий протеолипидный белок (миелиновый фактор транскрипции 1), - фактор транскрипции, вырабатывается в шванновских клетках и олигодендроцитах.

18. Правильный ответ - Д

Периферический нерв содержит оболочки разных уровней: эндоневрий, периневрий и эпиневрий. Они построены из соединительной ткани и содержат кровеносные сосуды, а из клеточных элементов - фибробласты. Периферический нервный ствол снабжён специальными нервами - nervi nervorum (ветви нервных волокон самого нервного ствола и волокон нервных сплетений в стенке кровеносных сосудов нерва). Nervi nervorum в эндоневрии и других соединительнотканных оболочках нерва образуют диффузные сплетения.

19. Правильный ответ - В

Периневрий - оболочка вокруг пучка нервных волокон в составе периферического нервного ствола. Его наружная часть образована плотной соединительной тканью, а внутренняя - несколькими слоями плоских периневральных клеток, снаружи и изнутри покрытых толстой базальной мембраной, содержащей коллаген типа IV, ламинин, нидоген и фибронектин. Периневральные клетки, связанные плотными контактами, образуют барьер, необходимый для поддержания гомеостаза в эндоневрии. Барьер предотвращает доступ в эндоневрий инфекцнонных агентов, контролирует транспорт молекул к нервным волокнам, защищает их от повреждения.

20. Правильный ответ -- Д

После локального сдавления периферического нерва развивается уо́леровская дегенерация. Нервные волокна в периферическом отрезке распадаются, их осевые цилиндры дегенерируют, миелин разрушается. Аналогичная картина наблюдается на небольшом протяжении центрального отрезка. В дальнейшем аксоны переживших травму нейронов регенерируют, они прорастают из центрального отрезка в периферический и восстанавливают связи с ранее иннервированными структурами. Шванновские клетки, находящиеся в контакте с регенерирующим аксоном, начинают пролиферировать, синтезировать компоненты базальной мембраны и формировать миелин. Шванновские клетки поддерживают процесс отрастания аксона и контролируют направленный рост аксона к мишени. ІІванновские клетки - источник факторов, стимулирующих регенерацию аксонов, и факторов, способствующих адгезии конуса роста. При отсутствии шванновских клеток аксоны не могут растн на значительные расстояния. В эксперименте трансплантация шванновских клеток в ЦНС поддерживает регенерацию аксонов, в обычных условиях не происходящую.

21. Правильный ответ - Д

Механорецепторную функцию в тканях выполняют тельца Пачини, сухожильный орган Го́льджи, нерв-но-мышечное веретено, комплекс клетки Ме́ркеля с нервной терминалью и другие механорецепторы.

Тельца Пачи́ни встречаются в соединительной ткани кожи и различных органов. В концевой части сухожилия на границе с мышцей, а также в связках капсулы суставов расположены сухожильные органы Го́льджи. Мышечные веретёна - механочувствительные воспринимающие приборы в скелетных мышцах. Комплексы клеток Ме́ркеля с нервными терминалями расположены в базальном слое эпидермиса.

22. Правильный ответ - Д

Все перечисленные в вопросе чувствительные нервные окончания (тельца Пачини, Майсснера, Руффи́ки и комплекс клетки Ме́ркеля с нервной терминалью) относят к несвободным. Эти сложно организованные сенсорные рецепторы, кроме терминали отростка чувствительного нейрона, содержат дополнительные структуры. Терминальные ветвления периферического отростка чувствительных нейронов, не содержащие дополнительных структур, называют свободными нервными окончаниями. Это наиболее распространённый тип сенсорных рецепторов. Подобные окончания присутствуют в соединительной ткани внутренних органов и в коже. Свободные нервные окончания эпидермиса расположены в базальном и шиповатом его слоях. В областях кожи с высокой тактильной чувствительностью терминали достигают зернистого слоя.

23. Правильныв̆ ответ - A

Нейромедиатор в нервно-мышечном синапсе - ацетилхолин, в пресинаптической области находящийся в светлых синаптических пузырьках. Секреция медиатора осуществляется путём экзоцитоза. При этом мембрана синаптических пузырьков сливается с пресинаптической мембраной и ацетилхолин высвобождается в синаптическую щель. Двигательная нервная терминаль окружена щванновской клеткой, образующей оболочку нервно-мышечного синапса и изолирующей его от окружающих структур.

8.3. Центральная нервная система

Развитие. Головной отдел нервной трубки образует три расширения, или первичных мозговых пузыря: передний мозг (prosencephalon), средний мозг (mesencephalon) и ромбовидный мозг (rhombencephalon). На 5 -й неделе передний мозг разделяется на две части: конечный мозг (telencephalon), образованный первичными полусферами мозга, и промежуточный мозг (diencephalon) с глазными пузырями (рис. 8-33 и 8-34). Средиий мозг и ромбовидный мозг разделены глубоким перешейком (isthmus rhombencephali). Ромбовидный мозг разделяется на задний мозг (metencephalon) и миелэнцефалои (myelencephalon). Из заднего мозга развиваются мост (pons cerebri) и мозжечок (cerebellum). Остальная часть нервной трубки формирует спинной мозг. Полость заднего мозга известна как IV желудочек. Полость промежуточного мозга - III желудочек. Полости в полусферах мозга - боковые желудочки. III и IV желудочки соединены просветом среднего мозга. Просвет сужается, и образуется сйльвиев водопровод. Боковые желудочки сообщаются с III желудочком через внутрижелудочковые отверстия Монро́.

I. СПИННОЙ МОЗГ

В спинной мозг входят проходящие в составе задних корешков центральные отростки чувствительных нейронов спинномозговых узлов. В передних рогах находятся мотонейроны, аксоны которых иннервируют скелетные мышцы.
Анатомия (рис. 8-35). Спинной мозг состоит из двух симметричных половин, соединённых узкой перемычкой, содержащей центральный канал (canalis centralis), остаток полости нервной трубки. Спереди обе половины разделены глубокой передней щелью (fissura mediana anterior), а сзади - задней перегородкой (septum posterius), отходящей от задней срединной борозды (sulcus medianus posterior). На поперечном разрезе легко различимы лежащее снаружи белое вещество и расположенная глубже тёмная масса - серое вещество. В верхних отделах спинного мозга белого вещества больше, чем в нижних.

Рис. 8-33. Зачаток головного мозга состоит из трёх первичных мозговых пузырей: переднего, среднего и ромбовидного. Из переднего мозга развиваются конечный и промежуточный мозг. Ромбовидный мозг даёт начало заднему мозгу (мост и мозжечок) и миелэнцефалону [из DeMyer W, 1988]

Рис. 8-34. Развитие мозга в начале 6 -й недели. Уже произошло разделение первичных мозговых пузырей на отделы головного мозга. В области промежуточного мозга виден глазной пузырь. Справа показаны полости в различных отделах мозга. На уровне конечного мозга боковые желудочки сообщаются с ІІІ желудочком через внутрижелудочковые отверстия Монро́. Зачаток сйльвиева водопровода соединяет III и IV желупочки [из Sadier TW, 1990]

1. Серое вещество на поперечном разрезе имеет характерную форму бабочки, состоит из отростков нервных клеток и их перикарионов, образующих скопления - ядра, объединённые в пластинки. Каждая половина серого вещества формирует на протяжении всего спинного мозга выступы - серые столбы: передний столб - columna anterior, задний столб - columna posterior и боковой столб - columna lateralis. Столб на поперечном разрезе получает название ро́га, соответственно передний (cornu anterius), задний (cornи posterius) и боковой (cornu laterale). Между передним и задним рогом в составе серого вещества различают промежуточную зону (substantia intermedia, пластинка VII). Правая и левая половины серого вещества соединены серой спайкой (comissura grisea), находящейся в пределах пластинки X. Центральный канал (canalis centralis) разделяет серую спайку на переднюю (comissura grisea anterior) и заднюю (comissura grisea posterior) части.
а. Пластинки (рис. 8-35, табл. 8-3). Перикарионы нейронов серого вещества по длине спинного мозга картированы по десяти пластинкам. Топография ядер соответствует топографии пластинок, хотя они не всегда совпадают.
(1) Пластинка I. Тонкий слой серого вещества у поверхности заднего столба; содержит мелкие нейроны, нейроны средних размеров, а также крупные веретеновидные нейроны, расположенные параллельно поверхности серого вещества. Здесь, в пределах N. dorsomarginalis, найдены безмиелиновые аксоны, короткие дендриты и синаптические контакты. Перикарионы нейронов образуют синаптические контакты с аксонами из пластинки II, а аксоны псевдоуниполярных нейронов оканчиваются на дендритах части нейронов пластинки I. Основная часть аксонов, поступающих из пластинки II, а также принадлежащих псевдоуниполярным нейронам, входит в состав краевого пояса Лисса́yэра (fasciculus dorsolateralis) [І 2 б (3) (а)].

Рис. 8-35. Поперечный срез спинного мозга. А - структуры серого и белого вещества. Б топография пластинок в сером веществе (объяснения смотри в тексте). 1 - Sulcus medianus posterior, 2 - Radix dorsalis, 3 - Funiculus posterior, 4 - Septum medianum posterius, 5 - Cornu posterius, 6 - Funiculus posterolateralis, 7 - Funiculus anterolateralis, 8 - Cornu anterius, 9 - Commissura grisea posterior, 10 - Canalis centralis, 11 - Commissura grisea anterior, 12 - Commissura alba, 13 Funiculus anterior, 14 - Fissura mediana anterior, 15 - Radix ventralis, 16 - Fasciculus gracilis, 17 Fasciculus cuneatus, 18 - Fasciculus dorsolateralis, 19 - Tractus spinocerebellaris posterior, 20 Tractus pyramidalis lateralis, 21 - Cellulae marginales, 22 - Substantia gelatinosa, 23 - Nucleus proprius, 24 - Processus reticularis, 25 - Tractus spinocerebellaris anterior, 26 - Fasciculi proprii, 27 Cellulae motoriae laterales, 28 - Substantia intermedia, 29 - Cellulae motoriae mediales, 30 - Tractus pyramidalis anterior, 31 - Fasciculus anterolateralis: tractus spinotectalis, tractus spinothalamicus, tractus spinoannularis, tractus spino-olivaris; 32 - Fasciculus longitudinalis medialis: tractus vestibulospinalis medialis, tractus vestibulospinalis lateralis, tractus reticulospinalis, tractus tectospinalis, tractus interstitiospinalis [нз Nieuwenhuys Ret al, 1988]

Нейроны пластинки I реагируют на болевые и температурные стимулы и отдают волокна спиноталамическому пути противоположной стороны. В пластинке I присутствуют нейроны, содержащие вещество P и энкефалин, и проходят волокна, дающие положительную иммуноцитохимическую реакцию на вещество P , энкефалин, соматостатин и серотонин.
(2) Пластинка II располагается вентромедиально от пластинки I, на всех уровнях спинного мозга содержит скопление мелких нейронов - рола́ндово студени́стое вещество (substantia gelatinosa Rolandi). В пластинку II входят аксоны из краевого пояса Лисса́уэра, заднего канатика и прилегающих частей бокового канатика. K нейронам внутренней зоны пластинки II подходят волокна болевой и температурной чувствительности, а к нейронам наружной зоны - волокна тактильной чувствительности. Аксоны нейронов пластинки II уходят в краевой пояс Лисса́yэра и собственные пучки [I 2 б (3) (б)]. Другая часть аксонов заканчивается в пределах той же пластинки на других уровнях. Нейроны пластинки II влияют на возбудимость крупных нейронов центральных отделов серого вещества (например, пластинки IV), дендриты которых проникают в пластинку II и контактируют с перикарионами её нейронов. Пластинка II, как и пластинка I, содержит в большом количестве вещество P, нейромедиатор передачи возбуждения от терминалей центральных отростков псевдоуниполярных нейронов спинномозговых узлов к вставочным нейронам спинного мозга, а также энкефалин.
(3) Пластинка III. Ветви дендритов нервных клеток этой пластинки оканчиваются в пластинках II и I; аксоны дихотомически делятся и образуют густое сплетение в пластинках III и IV.
(4) Пластинка IV. Нейроны отвечают на тактильные сигналы, возникающие при лёгком прикосновении. Аксоны некоторых нейронов в составе проекционных путей переходят через переднюю белую спайку на противоположную сторону и восходят к таламусу.
(5) Пластинка V расположена в основании заднего рога. Латеральная часть пластинки участвует в образовании ретикулярной формации, нанболее выраженной в шейном отделе. Нейроны варьируют по размерам и форме. Дендриты некоторых из них направляются в пластинку II, где вступают в контакт с центральными отростками псевдоуниполярных нейронов.
(6) Пластинка VI присутствует только в утолщениях спинного мозга (intumescentia cervicalis et lumbalis). В медиальной части пластинки оканчиваются мышечные афференты, а в латеральной части проходят нисходящие спинальные пути.
(7) Пластинка VII (zona intermedia) расположена между передними и задними рогами. В утолщениях пластинка заходит в область передних рогов. Нейроны пластинки образуют несколько ядер. Нейроны, не входящие в состав ядер данной пластинки, вместе с нейронами прилежащих областей пластинок V и VI образуют перекрещивающиеся волокна переднего спиномозжечкового пути [I 2 б (1) (б) (iii)]. Здесь различают несколько ядер (табл. 8-3).
(a) Nucleus dorsalis (Kıapка) образовано нейронами, расположенными в медиальной части пластинки на уровне $\mathrm{C}_{8}-\mathrm{L}_{2} . \mathrm{K}$ нейронам ядра подходят коллатерали центральных отростков псевдоуниполярных нейронов. Аксоны нейронов ядра образуют задний спиномозжечковый путь (Фле́ксига) [2 б (1) (б) (iv)].
(б) Nucleus intermediolateralis расположено на уровне $\mathrm{Th}_{1}-\mathrm{L}_{2}$ (L_{3}). Веретеновидные нейроны ядра дают начало преганглионарным симпатическим волокнам, выходящим из спинного мозга через передние корешки и проходящим через белые соединительные ветви.
(в) Nucleus intermediomedialis расположено в медиальной части пластинки латеральнее центрального канала. Ядро получает висцеральные афференты на всех уровнях спинного мозга.
(г) Крестцовое парасимпатическое ядро Онуфровича.

Таблица 8-3. Ядра спинного мозга

Стодб	Ядро	Пластинка	Протяхённость	Связи и функция
Завний	N. dorsomarginalis	1	На всём протяжении	Получает афференты из задних корешков; отдаёт аксоны в спиноталамический тракт
	Рола́ндово студениістое вещество	II	На всём протяжении	Получает и передаетт информацию от афферентов болевой и температурной чувствительности
	N. proprius	III, IV, V	На всём протяжении	Получает афференты из спинномозговых узлов и нисходящие волокна из мозга; начало спиноталамического тракта
		VI	$\mathrm{C}_{4}-\mathrm{Th}_{1}$ и $\mathrm{L}_{2}-\mathrm{S}_{3}$	Обрабатывает проприоцептивную информацию от мышц
	N. dorsalis (Kıapкa)	VII	$\mathrm{C}_{8}-\mathrm{L}_{3}$	Начало дорсального спиномозжечкового тракта
Боковой	N. intermediomedialis	VII	Th $\mathrm{h}_{1}-L_{3}$	Получает афференты из внутренних органов
	N. intermediolateralis	VII	Th $\mathrm{H}_{1}-\mathrm{L}_{3}$	Содержит перикарионы преганглионарных симпатических нейронов
	Крестиовое парасимпатическое ядро Онуфровича	VII	$\mathrm{S}_{2}-\mathrm{S}_{4}$	Содержит перикарионы преганглионарных парасимпатических нейронов, участвующих в иннервации органов таза
	Периэпе́ндимное (центральное) серое вещество	X	На всём протяжении	Связано с вегетативными нейронами
Передний	Периэпе́ндимное (центральное) серое вещество	VIII	На всём протяжении	Получает нисходящие аксоны из головного мозга
	Ядро медиальных мотонейронов	IX	На всём протяжении	Иннервация мыши тела
	Ядро латеральных мотонейронов	IX	$\mathrm{C}_{4}-\mathrm{Th}_{1}$ и $\mathrm{L}_{2}-\mathrm{S}_{3}$	Иннервация мыши конечностей
	Диафрагмальное ядро	IX	$\mathrm{C}_{3}-\mathrm{C}_{5}$	Иннервация диафрагмы
	Ядро добавочного нерва	IX	$\mathrm{C}_{1}-\mathrm{C}_{6}$	Иннервация m. sternocleidomastoideus и m. trapezius

(д) Центральное шейное ядро расположено в виде прерывающегося скопления нейронов в верхних шейных сегментах, латерально от n. intermediomedialis. С нейронами ядра вступают в контакт центральные отростки псевдоуниполярных нейронов. Аксоны нейронов ядра, перекрещиваясь, проходят в мозжечок и нижнее вестибулярное ядро.
(8) Пластинка VIII. В утолщениях спинного мозга пластинка доходит до средней части передних рогов. В остальных частях располагается в основании передних рогов вентральнее пластинки VII.
(9) Пластинка IX содержит несколько скоплений крупных двигательных нейронов. Различают медиальную и латеральную группы ядер. Медиальная группа ядер прослежена по всей длине мозга. В ней имеются переднємедиальные и заднемедиальные ядра. Гlереднемедиальные ядра крупнее и расположены в верхних шейных, верхних грудных и некоторых пояснично-крестцовых сегментах. Заднемедиальные ядра выражены в утолщениях мозга. Нейроны медиальной группы ядер иннервируют мускулатуру туловища. Остальные скелетные мышцы получают эфферентную иннервацию от холинергических мотонейронов латеральной группы ядер. Небольшое количество мелких нейронов передних рогов содержит γ-аминомасляную кислоту.
(10) Пластинка X - область серого вещества, прилежащая к центральному каналу. б. Столбы - выступы серого вещества спинного мозга.
(1) Передний столб (columna anterior), более объёмистый, содержит перикарионы мотонейронов. Соответствует локализации пластинок VIII-IX. Передние рога серого вещества сильно развиты в шейном и поясничном отделах. Пластинка VIII содержит вставочные нейроны, их аксоны образуют синаптические контакты с мотонейронами, а в пластинке IX расположены α - и γ-мотонейроны.
(2) Боковой столб (columna lateralis). В торако-люмбальном отделе серое вещество образует боковой выступ, носящий название бокового рога. Боковой столб входит в состав пластинки VII и содержит вставочные преганглионарные симпатические нейроны, образующие nucleus intermediolateralis (табл. 8-3).
(3) Задний столб (columna posterior) включает пластинки I-IV. Верхушка заднего рога окаймлена краевым поясом Лиссауэра (zona marginalis Lissaueri) - пластинка I (рис. 8-35). Рола́ндово студени́стое вещество (substantia gelatinosa Rolandi, пластинка II) отделено от краевого пояса губчатой зоной (zona spongiosa). В нижних шейных и верхних грудных отделах спинного мозга между латеральным краем заднего рога и боковым рогом залегает ретикулярная формация (formatio reticularis).
в. Нейроны. В сером веществе спинного мозга находятся тела двигательных, вставочных и вегетативных нейронов.
(1) Мотонейроны. Различают крупные, или α-мотонейроны, и мелкие, или γ-мотонейроны.
(a) α-Мотонейроны входят в состав медиальных и латеральных ядер. Это наиболее крупные клетки спинного мозга. Их аксоны образуют нервно-мышечные синапсы с поперечнополосатыми волокнами скелетной мышцы и участвуют в формировании нейромоторных единиц (глава 7 IB 1 а). Аксоны α-мотонейронов посылают коллатерали к вставочным нейронам (клетки Ре́ншоу), образующим тормозные синапсы с α-мотонейронами.
(б) γ-Мотонейроны иннервируют интрафузальные волокна мышечных веретён.
(2) Вставочные нейроны получают информацию от одних нейронов и передают её другим. Аксоны вставочных нейронов участвуют в образовании проводящих путей [126(1)(6)].
(a) Клетки Ре́ниоу регистрирукт сигналы от возвратной ветви аксонов α-мотонейронов. Аксоны клеток Реншоу образуют тормозные синапсы с перикарионами этих мотонейронов.
(б) Передача болевых импульсов (рис. 8-36). Вещество Р участвует в передаче болевых стимулов в качестве возбуждающего нейромедиатора в синапсах между центральными отростками чувствительных нейронов спинномозгового узла и перикарионами нейронов спиноталамического пути. Блокирование секреции вещества P и снятие болевых ощущений реализуются через рецепторы

Рис. 8.36. Путь проведения болевых импульсов (стрелки). Вещество P передаёт возбуждение $с$ центрального отростка чувствительного нейрона на нейрон спиноталамического тракта. Через опиоидные рецепторы энкефалин из вставочного нейрона тормозит секрецию вещества P из чувствительного нейрона и проведение болевых сигналов [из DeMyer W, 1988]

опиоидных пептидов, встроенных в мембрану терминали центрального отростка чувствительного нейрона (пример феномена пресинаптического торможения). Источник опиоидного пептида энкефалина - вставочный нейрон.
(3) Вегетативные нейроны (табл. 8-3) расположены в висцеральных ядрах грудного и поясничного отделов (n. intermediomedialis, n. intermediolateralis), а также в крестцовом отделе (ядро Онуфровича) промежуточной зоны (substantia intermedia) серого вещества. Нейроны n. intermediomedialis образуют синаптические контакты с афферентными волокнами общей висцеральной чувствительности (общие висцеральные афференты), а их аксоны вступают в контакты с нейронами n. intermediolateralis. Клетки n. intermediolateralis - преганглионарные симпатические нейроны. Их аксоны выходят из спинного мозга в составе передних корешков на уровне $\mathrm{Th}_{1}-\mathrm{L}_{3}$. Ядро Окуфровича содержит преганглионарные парасимпатические кейроны. Их аксоны проходят в передних корешках крестцового отдела.
2. Белое вещество состоит из нервных волокон и клеток нейроглии. Рога серого вещества разделяют белое вещество на три канатика.
а. Задние канатики расположены между задней перегородкой и задними корешками. Боковые канатики лежат между передними и задними корешками. Передние канатики отграничены передней щелью и передними корешками. Кпереди от серой спайки имеется участок белого вещества, соединяющий передние канатики, - белая спайка.
6. Проводящие пути образованы цепью нейронов, соединённых последовательно своими отростками; обеспечивают проведение возбуждения от нейрона к нейрону (от ядра к ядру).
(1) Восходящие пути
(a) Центральные отростки чувствительных нейронов спинномозговых узлов
(i) Товкий пучок (Голяя, fasciculus gracilis) проходит в составе заднего канатика и заканчивается в тонком ядре продолговатого мозга; проводящий путь проприоцептивной и тактильной чувствительности.
(ii) Клиновидный пучок (Бу́pдаха, fasciculus cuneatus) проходит в заднем канатике и заканчивается в клиновидном ядре продолговатого мозга; проводящий путь проприоцептивной и тактильной чувствительности.
(б) Аксоны вставочных нейронов
(i) Спиноталамический путь вентральный (tractus spinothalamicus ventralis) проекционный афферентный путь, проходящий в переднем канатике. Периферические отростки первых нейронов, расположенных в спинномозговых узлах, проводят тактильные и прессорные ощущения от механорецепторов кожи. Центральные отростки этих нейронов вступают через задние корешки в задние канатики, где поднимаются на $2-15$ сегментов и образуют синапсы с нейронами задних рогов. Аксоны этих нейронов переходят на противоположную сторону в составе передней спайки и проходят далее в передней периферической зоне переднебоковых канатиков. Отсюда волокна пути восходят к заднелатеральному вентральному ядру таламуса вместе с латеральным спиноталамическим путём.
(ii) Спиноталамический путь латеральный (tractus spinothalamicus lateralis) - проекционный афферентный путь, проходящий в боковом канатике. Периферическими рецепторами являются свободные нервные окончания кожи. Центральные отростки псевдоуниполярных нейронов спинномозговых узлов входят в спинной мозг через латеральные отделы задних корешков и, поднявшись в спинном мозге на $1-2$ сегмента, образуют синапсы с нейронами рола́ндова студенистого вещества. Аксоны этих нейронов фактически образуют латеральный спиноталамический путь. Они идут через переднюю спайку на противоположную сторону и поднимаются в латеральных отделах боковых канатиков. Спиноталамические пути проходят через ствол мозга и заканчиваются в вентролатеральных ядрах таламуса. Главный путь проведения болевой и температурной чувствительности.
(iii) Спиномозжечковый путь передний (tractus spinocerebellaris anterior) проекционный афферентный проприоцептивный путь мозжечка, проходящий в латеральном канатике; вступает, перекрещиваясь, в верхнюю ножку мозжечка противоположной стороны и заканчивается в коре червя мозжечка.
(iv) Спиномозжечковый путь задний (пучок Фле́ксига, tractus spinocerebellaris posterior) - проекционный афферентный проприоцептивный путь мозжечка, проходяций в боковом канатике спинного мозга и нижней ножке мозжечка; заканчивается в коре червя мозжечка той же стороны. По спиномозжечковым путям в мозжечок поступает информация о всех афферентных сигналах глубокой чувствительности и о всех изменениях мышечного тонуса, что необходимо для координации проиэвольных движений.
(v) Спинооливный путь (tractus spino-olivaris) - пучок восходящих волокон переднего канатика, заканчивающийся в добавочных ядрах оливы.
(vi) Спинопокрышечный (спинотектальный) путь (tractus spinotectalis) - проекцнонный восходящий путь общей чувствительности, проходит в переднем канатике, стволе головного мозга и заканчивается в нижнем и верхнем холмиках крыши среднего мозга противоположной стороны.
(vii) Спиноретикулярный путь (tractus spinoreticularis) - пучок восходящих волокон бокового канатика, оканчивающийся в ретикулярной формации продолговатого мозга, моста и среднего мозга. Путь поступления афферентной информации соматических и висцеральных рефлексов.
(2) Нисходящие пути заканчиваются исключительно на мотонейронах.
(a) Супраспинальные
(i) Корково-спиномозговой путь передний (пирамидный путь передний, tractus corticospinalis ventralis) образован аксонами нейронов, расположенных

в двигательной зоне коры [предцентральная извилина (gyrus precentralis)]. Волокна пути проходят через внутреннюю капсулу и в переднем канатике, заканчиваются в передних рогах, посегментно перекрещиваясь.
(ii) Корково-спинномозговой путь латеральный (пирамидный путь латеральный, tractus corticospinalis lateralis) начинается в коре предцентральной извилины, проходит через внутреннюю капсулу и после перекрёста в продолговатом мозге проходит в боковом канатике, заканчиваясь в передних рогах.
(iii) Тектоспинальный путь (покрышечно-спинномозговой, tractus tectospinalis) начинается в верхних холмиках крыши среднего мозга, проходит через ствол мозга и передний канатик спинного мозга, заканчивается в передних рогах.
(iv) Красноядерно-спинномозговой путь (пучок фон Монакова, tractus rubrospinalis) - нисходящий проекционный путь экстрапирамидной системы, начннается от красного ядра, проходит в мозговом стволе и боковом канатике и заканчивается в передних рогах.
(v) Ретикулоспинальный путь (tractus reticulospinalis) - эфферентный путь экстрапирамидной системы; начинается в ретикулярной формации продолговатого мозга, заканчивается в передних рогах спинного мозга. Контролирует тонус скелетной мускулатуры и висцеральные двигательные функции (например, автоматизм дыхания).
(vi) Преддверно-спинномозговой путь (пучок Ге́льда, пучок Левента́ля, tractus vestibulospinalis). Латеральный преддверно-спинномозговой путь начинается от латерального вестибулярного ядра (Дейтерса), проходит в переднем канатике и достигает в передних рогах α - и γ-мотонейронов. Аксоны нейронов медиального вестибулярного ядра (Швальбе) присоединяются к медиальному продольному пучку (fasciculus longitudinalis medialis) и спускаются вниз в виде медиального преддверно-спинномозгового пути до грудного отдела спинного мозга.
(vii) Оливо-спинномозговой путь (пучок трёхгранный Ге́львега, tractus olivospinalis). Нервные волокна пучка начинаются от оливного ядра, проходят в переднем канатике шейного отдела спинного мозга и заканчиваются в передних рогах.
(б) Спинальные
(i) В задних канатиках. Клетки ядер в задних столбах дают начало нисходящим путям в ипсилатеральных задних канатиках и заканчиваются в пластинках IV, V и, возможно, I. Эти нисходящие пути могут оказывать влияние на восходящие потоки афферентной информации.
[I] Пучок в форме запятой (fasciculus interfascicularis Шультце). Нисходящие ветви центральных отростков псевдоуниполярных нейронов спинномозговых узлов частично достигают нейронов N. dorsalis, частично - нейронов средней части пластинки VI. Эти ннсходящие волокна в шейных и верхннх грудных сегментах образуют пучок в форме запятой, а в поясничном отделе - fasciculus septomarginalis.
[II] Cептомаргинальный пучок (fasciculus septomarginalis) образован нисходящими волокнами, как и пучок в форме запятой, но в поясничном отделе.
(ii) B передних канатиках

Бороздчато-краевой пучок (fasciculus sulcomarginalis). Волокна медиального преддверно-спинномозгового пути, проходящие вблизи передней срединной борозды шейного отдела спинного мозга, образуют бороздчато-краевой пучок, спускающийся вниз и оканчивающийся в передней части грудного отдела спинного мозга. Волокна пучка влияют на тонус мыши шеи в соответствии с различными положениями головы.
(3) Смешанные восходящие и нисходящие пути
(a) Краевой пояс Jиссауэра (fasciculus dorsolateralis) - место вхождения в спинной мозг центральных отростков псевдоуниполярных чувствительных нейронов спинномозговых узлов. Отростки делятся на короткую нисходящую и длинную восходящую ветви. Краевой пояс содержит также аксоны вставочных нейронов спинного мозга.
(б) Собственные пучки (fasciculi proprii) образованы перекрещивающимися и неперекрещивающимися короткими ветвями аксонов вставочных нейронов серого вещества спинного мозга и центральных отростков чувствительных нейронов спинномозговых узлов. Они связывают группы нейронов одного и того же сегмента и различных сегментов.

II. ГОлОВНОЙ МОЗГ

A. Мозжечок. Координирует движения и равновесие, расположен над продолговатым мозгом и мостом и связан со стволом мозга тремя парами ножек, по которым проходят афферентные и эфферентные проводящие пути. В глубине белого вещества мозжечка лежат скопления нейронов - ядра мозжечка. Извилины мозжечка, образующие на разрезе фигуру разветвлённого дерева (arbor vitae), разделены глубокими бороздами. Каждая извилина содержит узкую пластинку белого вещества, полностью покрытую серым веществом (кора мозжечка, рис. 8-37), в котором различают три слоя: наружный - молекулярный, средний ганглионарный и внутренний - зернистый.

Рис. 8-37. Организация коры мозжечка. Кора образована тремя слоями: наружный - молекулярный, средний - ганглионарный и внутренний - зернистый. Из подлежащего белого вещества в кору проходят афферентные лазящие и моховидные волокна, а выходят аксоны грушевидных клеток Пуркинье́. Стрелками указано направление распространения возбуждения [из Schiebler TH, Schmidt W, 1991]

1. Ганглионарный слой образуют тела клеток Пуркинье́ (рис. 8-42).
а. Перикарионы грушевидной формы образуют практически сплошной пласт и расположены примерно на одном уровне от поверхности коры.
б. Дендриты. От тела в молекулярный слой отходят 2-3 сильно ветвящихся дендрита. Разветвления дендритов образуют узкую пластину, расположенную в перпендикулярной направлению извилины плоскости,
в. Аксон. Через эернистый слой в белое вещество от тела клетки Пуркинье́ отходит аксон. Аксоны клеток Пуркинье́ - единственные эфферентные волокна, выходящие из коры мозжечка. Они заканчиваются на нейронах ядер мозжечка, небольшая их часть направляется в вестибулярное ядро.
Коллатерали аксона. Вблизи тела клетки от аксона отходят коллатерали, направляющиеся обратно в ганглионарный слой и глубокие части молекулярного слоя; здесь они разветвляются, веточки идут вдоль извилин, вступая в контакт с телами и дендритами других клеток Пуркинье́.
г. Афференты мозжечка (рис. 8-37). На клетках Пуркинье́ так или иначе заканчиваются все афферентные пути мозжечка.
2. Молекулярный слой содержит корзинчатые и звёздчатые клетки.
a. Корзинчатые клетки - мультиполярные нейроны неправильной формы и небольших размеров. Они образуют многочисленные длинные и сравнительно мало разветвлённые дендриты. Их аксон направлен параллельно поверхности мозжечка в той же плоскости, в которой расположены ветвления дендритов клеток Пуркинье́. На всём протяжении аксон образует ветви, заканчивающиеся в виде корзинок на телах клеток Пуркинье́.
б. Звёздчатые клетки расположены ближе к поверхности коры. Их аксоны образуют синаптические контакты с дендритами клеток Пуркинье́.
3. Зернистый слой содержит клетки-зёрна и клетки Го́льджи II типа (глава 8.1 III B 5).
a. Клетки-зёрна. Тело их весьма невелико по размерам и практически полностью занято ядром; 3-4 очень коротких дендрита образуют концевые разветвления, напоминающие птичьи лапки.
Связи клеток-зёрен. Аксоны клеток-зёрен поднимаются в молекулярный слой, где образуют Т-образные разветвления, идущие параллельно поверхности мозжечка в плоскости, совпадающей с направлением извилины. Это параллельные волокна, образующие синапсы с дендритами:
(a) клеток Пуркинье́,
(б) корзинчатых клеток,
(в) звёздчатых клеток,
(г) клеток Го́льджси II типа.
б. Клетки Го́льджи II типа. Наряду с зернистыми клетками, составляющими основную массу нейронов зернистого слоя, здесь расположены также клетки Го́льджи II типа. Их крупные перикарионы нередко лежат непосредственно под ганглионарным слоем, а бо́льшая часть дендритов разветвляется в молекулярном слое. Аксоны клеток Го́льджи II типа, входя в состав клубочков мозжечка (glomeruli cerebellosi), заканчиваются синаптическими контактами на розетках моховидных волокон. На клетках Го́льджи II типа заканчивается часть коллатералей аксонов грушевидных клеток Пуркинье́.
4. Афференты мозжечка (рнс. 8-38, табл. 8-4). В кору мозжечка входят многочисленные волокна из различных отделов мозга. В зернистом слое находятся моховидные волокна. Лазящие волокна заканчиваются в молекулярном слое на дендритах клеток Пуркинье́.
a. Моховидные волокна, проникнув в зернистый слой, ветвятся и формируют концевые розетки, вступающие в контакт с дендритами клеток-зёрен в составе клубочков

мозжечка (рис. 8-38). Моховидные волокна образуют также синапсы с дендритами клеток Го́льджи II типа. Следовательно, моховидные волокна вступают в контакт как с аксонами клеток Го́льджи II типа, так и с их дендритами.
б. Лазящие волокна подходят к телам клеток Пуркинье́и здесь распадаются на несколько тонких веточек, оплетающих дендриты. На одну клетку Пуркинье́ приходится одно лазящее волокно.
5. Клубочки мозжечка (рис. 8-38) - скопление терминальных ветвлений отростков различных нейронов мозжечка и моховидных волокон. Клубочек окружён капсулой из глиальных клеток. Вокруг клубочка расположены скопления клеток-зёрен. Клубочки содержат:
a. розетки - окончания моховидных волокон,
б. птичьи лапки - терминали дендритов клеток-зёрен,
в. аксоны клеток Го́льджи II типа (формируют аксо-аксональные синапсы),
г. часть разветвлений дендритов клеток Го́льджи II типа.
6. Возбуждающие и тормозные синапсы. Моховидные и лазящие волокна в коре мозжечка образуют возбуждающие синапсы. Параллельные волокна клеток-зёрен заканчиваются возбуждающими синапсами. Остальные типы связей в коре мозжечка формируют тормозящие синапсы.
7. Глия. Мозжечок содержит различные типы нейроглиальных клеток. Олигодендроциты присутствуют во всех слоях и особенно в большом количестве в белом веществе и зернистом слое коры. В последнем имеются также волокнистые и протоплазматические астроциты. В ганглионарном слое выделяют бергмановскую глию. Волокна этих клеток направляются к поверхности коры и поддерживают ветвления дендритов клеток Пуркинье́.
Б. Кора большого мозга (неокортекс) содержит 6 слоёв нервных клеток (рис. 8-39).

Рис. 8-38. Клубочек мозжечка. Окончания моховидного волокна занимают основной объём клубочка. Они образуют синаптические контакты с терминалями дендритов клеток-зёрен ($п т и ч ь и м и ~ л а п к а-~$ ми) и дендритами клеток Го́льджи II типа. Розетки моховидных волокон и аксоны клеток Го́льджи II типа формируют аксо-аксональные синапсы [из DeMyer W, 1988]

Таблица 8-4. Связи нейронов в коре мозжечка (По: DeMyer W. Neuroanatomy. National Medical Series, Baltimore: Williams a. Wilkins, 1988, p. 195)

$\begin{gathered} \text { Тип } \\ \text { нейронов } \end{gathered}$	Слой	Афферентные связи	Контакты аксонов
Звёздчатые клетки Корзинчатые клетки	Молекулярный	Параллельные волокна от зернистых клеток	Дендриты клеток Пуркинье́ в поверхностных частях молекулярного слоя Перикарионы клеток Пуркинье́ (через корзинчатые коллатерали)
Клетки Пуркинье́	Ганглиозный	Лазящие волокна Разветвления аксонов зернистых клеток Волокна корзинчатых клеток Аксоны звёздчатых клеток Норадренергические волокна от голубого ядра	Глубокие ядра (большинство аксонов) Вестибулярные ядра продолговатого мозга Клетки Пуркинье́ и клетки Гольджки II (возвратные коллатерали клеток Пуркинье)
Клетки Гоадджи II Клетки-зёрна	Зернистый	Моховидные и лазящие волокна с дендритами в зернистом слое Параллельные волокна с дендритами в молекулярном слое Окончания моховидных волокон в клубочках мозжечка	Клубочек мозжечка (синапсы на розетках моховидных волокон) Дендриты клеток Пуркинье́, корзинчатых и звёздчатых клеток. Дендриты клеток Гольджи II в молекулярном слое

Рис. 8-39. Основные типы нейронов коры большого мозга. I-VI - слои коры; 1 - пирамидный нейрон; 2 - звёздчатый нейрон; 3 - веретеновидный нейрон; 4 - клетки Мартино́тти; 5 - горизонтальные нейроны Рамо́н-и-Каха́ла; а - афферентные волокна; 6 - эфферентные волокна [из Sarkisov SA, 1966]

1. Слои (цитоархитектоника). Снаружи внутрь слои коры располагаются в следующем порядке: молекулярный, наружный зернистый, наружный пирамидный, внутренний зернистый, внутренний пирамидный (ганглионарный) и полиморфный (мультиформный).
I. Молекулярный. Содержит редкие перикарионы, здесь проходят аксоны и дендриты.
II. Наружный зернистый. В наружном зернистом слое присутствуют небольшие пира мидные и звёздчатые нейроны.
III. Наружный пирамидный. Представлен многочисленными пирамидными нейро нами средней величины; размеры их перикариона возрастают в глубоких частях слоя.
IV. Внутренний зернистый. Содержит мелкие звёздиатые клетки.
V. Внутренний пирамидный (ганглионарный). Состоит из крупных пирамидных нейронов и небольшого количества звёздчатых клеток.
VI. Полиморфный. Образован множеством нейронов различной величины и формы, а также некоторым количеством пирамидных и зернистых нейронов.
2. Нейроны
a. Пирамидные нейроны. Размеры перикариона - $10-100$ мкм, имеют длинный апикальный дендрит, выходящий из вершины пирамиды, и другие дендриты, отходящие от боковых поверхностей перикариона. От основания пирамиды отходит аксон, уходящий в белое вещество. Возвратные коллатеральные ветви аксона заканчиваются на других пирамидных нейронах или вставочных корковых нейронах. Разновидность пирамидных нейронов - клетки Бе́ца и Мейнерта.
(1) Клетки Беца расположены в слое V двигательной коры, это самые крупные нейроны коры. Размеры их перикариона более 100 мкм, они дают начало крупным миелинизированным аксонам пирамидного тракта.
(2) Клетки Мейнерта - крупные нейроны, расположенные в слое V зрительной коры затылочной доли. Они посылают аксоны в ствол мозга и участвуют в рефлексе движения глаза.
3. Звёздчатые нейроны. Их перикарионы имеют округлую, полигональную или треугольную форму, $4-8$ мкм в диаметре. Аксон и дендриты отходят на короткое расстояние от перикариона и участвуют в образовании внутрикорковых связей.
в. Beретеновидные нейроны чаще встречаются в слое VI. От противоположных концов перикариона отходят дендриты. Аксон уходит глубоко в белое вещество.
г. Клетки Мартино́тти присутствуют во всех слоях, кроме первого. Имеют перикарион полигональной формы и короткие дендриты. Аксон направляется вертикально к поверхности коры, отдавая коллатерали во всех слоях.
д. Горизонтальные нейроны Рамо́н-и-Каха́ла находятся в слое I. От их веретеновидного перикариона отходит длинный аксон, который вместе с дендритами образует горизонтальные связи в пределах слоя I.
4. Модули. Кора больших полушарий состоит из модулей. Модуль имеет в поперечнике около 0,1 мм и пронизывает всю толщу коры. В зрительной коре типичный модуль включает более 100 тысяч синаптически связанных клеток, образующих локальные нейронные сети. Модули контактируют друг с другом коллатералями дендритов и аксонов.
В. Оболочки мозга (рис. 8-40). Головной и спинной мозг защищён оболочками. Мягкая мозговая оболочка (pia mater) непосредственно прилегает к мозгу. Снаружи проходит твёрдая мозговая оболочка (dura mater). Между ними расположена средняя, паутинная оболочка (t. arachnoidea). Все оболочки образованы волокнистой соединительной тканью. Мягкую и паутинную оболочки можно рассматривать как одно целое под общим названием рia-arachnoidea, или leptomeninx.

Рис. 8-40. Мозговые оболочки. 1 - эндотелиальная клетка; 2 - твёрдая мозговая оболочка; $\mathbf{3}$ паутинная оболочка; $\mathbf{4}$ - соединительная ткань; $\mathbf{5}$ - клетки паутинной оболочки; $\mathbf{6}$ - макрофаг; 7 - субарахноидальное пространство; 8 - мягкая мозговая оболочка; 9 - кровеносный сосуд; 10 периваскулярная соединительная ткань; 11 - мозг [из Hees H, Sinowatz F, 1992)]

1. Мягкая мозговая оболочка содержит переплетающиеся пучки коллагеновых волокон и сеть эластических волокон, множество равномерно распределённых кровеносных сосудов. Снаружи оболочка покрыта слоем плоских клеток. Оболочка повторяет ход борозд и извилин мозга.
2. Паутинная оболочка - сеть тонких соединительнотканных перегородок (трабекул), состоящих преимущественно из коллагеновых волокон и небольшого количества эластических волокон. Паутинная оболочка изнутри и снаружи выстлана непрерывным слоем тонких уплощённых клеток. Пространство между трабекулами заполнено цереброспинальной жидкостью и называется субарахноидальным. Паутинная оболочка в области борозд мозга не прилегает вплотную к мягкой мозговой оболочке. Здесь присутствуют цистерны, содержащие большое количество цереброспинальной жидкости.
3. Твёрдая мозговая оболочка состоит из плотной волокнистой соединительной ткани, в которой преобладают коллагеновые волокна. Пространство между твёрдой и паутинной оболочкой называется субдуральным. Оно содержит небольшое количество жидкости, отличной от цереброспинальной. Снаружи твёрдая мозговая оболочка покрыта рыхлой соединительной тканью с большим количеством вен. Твёрдая мозговая оболочка образует складки, которые вместе с надкостницей формируют синусы, выстланные эндотелием и содержащие венозную кровь.

III. ПОРОКИ РАЗВИТИЯ

А. Нарушения эмбриогенеза

1. Дефекты смыкания нервной трубки (дизрафии) могут варьировать от полного отсутствия мозга (анэнцефалия) до клинически незначительного дефекта дужек тел позвонков при расщеплённом позвоночнике без спинномозговой грыжи (spina bifida occulta). Эти дефекты (как правило, наследуемые по многофакторному типу) возникают при неполном слиянии закрывающегося нервного желобка (см. главу 3 VI Г).
a. Расщеплённый позвоночник с менингоцеле (spina bifida cystica) - грыжевое выпячивание оболочек мозга (менингоце́ле) или оболочек и вещества спинного мозга (менингомиелоце́ле) через дефект позвонков, обычно в поясничном отделе.
б. Синдром А́рнольда-Киа́ри - протрузия структур ствола мозга и мозжечка через большое затылочное отверстие в шейный отдел спинного мозга. Порок часто сочетается с менингомиелоцеле.
в. Другие дизрафические проявления могут развиться при контакте эмбриональной нервной ткани с формирующейся кожей.
(1) Ограничение подвижности спинного мозга возникает, когда концевые нити (filum terminale) окружены фиброзной и жировой тканью, что препятствует нормальному росту спинного мозга по мере роста ребёнка.
(2) Дипломиелйя и диастематомиели́я (удвоение и расщепление спинного мозга).
(3) Сирингомиели่я - заполненная жидкостью полость или киста (syrinx) спинного мозга.
(4) Аплазия крестца встречается у 1% детей, матери которых больны диабетом. Основнде неврологические проявления - недержание мочи и парез нижних конечностей.
(5) Нейродермальные свищи обычно не вызывают неврологических нарушений. Тем не менее необходимо хирургическое обследование и закрытие дефекта, т.к. сообщение между кожей и спинным мозгом может привести к развитию менингита.
2. Дефекты передней срединной линии (голопрозэнцефали́я) могут вызывать гипоплазию гипоталамуса и формирование единого желудочка мозга.

3. Анома́лии формирования основания черепа

a. Платибази́я - вдавление краёв большого затылочного отверстия в заднюю черепную ямку вследствие укорочения ската или гипоплазии затылочной кости. Часто сочетается с синдромом Арнольда-Киа́ри.
6. Синдром Клиппе̇ля-Фе́йля - отсутствие или срастание тел нескольких шейных позвонков. Часто сочетается с расщеплённым позвоночником (spina bifida), сирингомиелией, нейросенсорной или перцептивной глухотой и врождёнными пороками сердца.
Б. Нарушения миграции и пролиферации клеток обычно возникают по неизвестной причине, хотя выявлена связь с приёмом токсических веществ (например, алкоголя, фенитоина) во время беременности, а также с хромосомными и другими генетическими аномалиями.

1. Аплазия мозолистого тела точнее диагностируется с помощью магниторезонансной томографии. Расстояние между желудочками увеличено.
2. Микроцефалия. Окружность головы (объём <1350 мл) в 2 раза меньше нормы. Обусловлена тем, что размеры черепа определяются малым объёмом мозга (микроэнцефалия).
3. Макроцефалия - большая окружность головы.
a. Гидроцефалия.
б. Наследственные метаболические и хромосомные дефекты могут приводить к макроцефалии, как и некоторые лейкодистрофйи (например, синдром Кэ́нэөэн, болезнь Алекса́ндера). Кистозные образования паутинной оболочки также могут служить причиной увеличения окружности головы.
4. Гидранэнцефалия - внутриутробный глубокий некроз коры головного мозга с последующим накоплением ликвора. Этиология неясна; предполагают дефекты миграции в нейроонтогенезе, двухстороннюю окклюзию внутренних сонных артерий.
В. Гидроцефалия - расширение желудочков мозга из-за чрезмерного объёма ликвора, самая частая причина увеличения головы в первые недели жизни.
Г. Врождённые аномалии черепных нервов и связанных с ними структур
5. Синдром Мёбиуса обусловлен недоразвитием ядер ствола мозга.
6. Нейросенсорная (перцептивная) глухота - в большинстве случаев результат врождённого дефекта.
Д. Аномалии развития мозжечка включают полное отсутствие че́рвя и болезнь Де́нди.Уо́кера (кистозное расширение IV желудочка с обструктивной гидроцефалией из-за блокады или атрезии отверстий Мажанди́ или Лю́шка).
Е. Пренатальная диагностика различных дефектов формирования нервной системы почти всегда может быть проведена во втором триместре беременности.
7. Большинство случаев открытых пороков формирования нервной системы сопровождается повышением уровня АФП в амниотической жидкости и сыворотке крови матери.
8. При обнаружении повышенного уровня $А Ф П$ в сыворотке крови матери необходимо провести УЗИ плода и амниоцентез. Пренатальная диагностика в таких ситуациях позволяет либо прервать беременность при выявлении грубого порока плода, либо сохранить её и психологически подготовиться к рождению ребёнка с тяжёлым заболеванием.
Ж. Профилактика. Риск возникновения врождённых пороков нервной системы может быть значительно снижен, если будущая мать принимает фолиевую кислоту в дозе 1 мг/сутки с момента зачатия и до окончания формирования нервной системы плода, т.е. в первые три месяца беременности.

ПРЕПАРАТЫ

А. Поперечный срез спинного мозга (импрегнация солями серебра по Рамон-и-Кахалу). Белое вещество (рис. 8-35) располагается по периферии препарата и имеет светло-коричневый цвет. Серое вещество окрашено в тёмно-коричневый цвет, занимает центральную часть препарата и имеет форму бабочки. На передней (вентральной) стороне в белое вещество глубоко проникает передняя щель (fissura mediana anterior), на задней (дорсальной) стороне ей соответствует плотная соединительнотканная перегородка (septum posterius). Этими образованиями спинной мозг делится на симметричные половины, которые соединяются перемычкой. На препарате видны следующие элементы: белая спайка (comissura alba), серая спайка (comissura grisea), центральный канал (canalis centralis), передние рога (cornu anterius), задние рога (cormи posterius), рола́ндово студенистое вещество (substantia gelatinosa Rolandi), губчатая зона (zona spongiosa), краевая зона Лисcayэpa (zona marginalis Lissaueri), передний канатик (funiculus anterior), боковой канатик (funiculus lateralis), задний канатик (funiculus posterior). Б. Срез коры больших полушарий головного мозга (импрегнация нитратом серебра). На сагиттальном срезе видно, что кора покрыта мягкой мозговой оболочкой. Под мягкой мозговой оболочкой располагается серое вещество, окрашенное в коричнево-жёлтый цвет и состоящее из огромного количества нервных клеток, лежащих в зернистой и волокнистой массе, образованной перерезанными нервными волокнами и глиальными клетками. Нервные клетки коры имеют веретенообразную, звёздчатую, пирамидную и другие формы. Основную и наиболее специфическую для коры полушарий головного мозга форму клеток представляют пирамидные клетки. Под большим увеличением можно видеть, что эти клетки имеют тела в виде высоких пирамид с узким основанием, вершнна их обращена к поверхности коры (рис. 8-41). От вершины и боковых поверхностей тела отходят дендриты, заканчивающиеся в различных зонах серого вещества. От основания пирамидной клетки берёт начало аксон. Его длина у различных пирамидных клеток различна. Величина пирамидных клеток и их количество варьнруют в разных зонах коры. Различные по форме нервные клетки располагаются в коре неравномерно и образуют шесть слоёв.

Молекулярный слой

Наружный зернистый слой

Наружный пирамидный слой

Внутренний зернистый слой

Внутренний пирамидный слой

Полиморфный слой

Рис. 8-41. Схема расположения клеток (цитоархитектоника) и волокон (миелоархитектоника) в коре большого мозга. Используя различные методы окрашивания, можно получить картину строения коры с хорошо различимыми отростками нейронов (левая часть рисунка), только перикарионами (средняя часть рисунка) или миелиновыми волокнами (правая часть рисунка). В последнем случае на уровне внутреннего зернистого н внутреннего пирамидного слоёв видны компактные скопления миелиновых волокон в виде соответственно наружной и внутренней полосок Байарже́ [по von Economo, из Clara $M, 1959]$
B. Cрез извилины мозжечка (импрегнация нитратом серебра, рис. 8-42). Извилины мозжечка покрыты мягкой мозговой оболочкой, в которой проходят многочисленные сосуды. Нервные клетки в сером веществе коры мозжечка располагаются тремя слоями: наружный - молекулярный (stratum moleculare), средний - ганглионарный (stratum ganglionare), внутренний - зернистый (stratum granulosum). Под большим увеличением можно видеть, что широкий молекулярный слой содержит глиальные клетки и небольшое количество нейронов двух типов: звёздчатые клетки - сравнительно некрупные, имеющие отростки, не выходящие за пределы слоя, и корзикчатые клетки - болес крупные и посылающие аксоны в нижележащий слой. Именно они образуют на телах клеток Пуркинье́ характерные разветвления, имеющие вид корзинок. Ганглионарный слой образован одним рядом больших, грушевидной формы клеток Пуркинье́, от которых, как правило, отходят два дендрита, древовидно разветвляющихся в молекулярном слое. Их аксон проникает в нижележащий слой и далее следует в белое вещество. Под слоем ганглионарных клеток располагается зернистый слой, содержащий большое количество клеток-зёрен, тела которых состоят из округлого ядра и узкого ободка нейроплазмы, окрашенных в светло-коричневый цвет. От тела отходит 3-4 коротких тёмноокрашенных дендрита, ветви которых имеют конечные образования, напоминающие своей формой птичьи лапки. Ниже зернистого слоя находится белое вещество, в котором на светлом фоне видно большое количество извилистых и параллельно идущих нервных волокон и ядер глиальных клеток.

Рис. 8-42. Срез коры мозжечка. На рисунке показаны наружный молекулярный слой, грушевидная клетка Пуркинье с густой сетью дендритов в молекулярном слое и часть зернистого слоя [из Сlara M, 1959]

ВОПРОСЫ

Пояснение. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждения, наиболее соответствующее каждому случаю.

1. Что верно для нейронов ЦНС?
(A) Митотически делятся
(Б) Нейрофиламенты состоят из тубулина
(B) Составляют растущую клеточную популяцию
(Г) Аксонный транспорт реализуется при помощи микротрубочек
(Д) Синтезируют белки миелина

2. Эпе́ндимная глия:

(A) входит в мантийный слой
(Б) происходит из нервного гребня
(B) выстилает спинномозговой канал и желудочки мозга
(Г) образует краевую вуаль
(Д) контактирует с наружной пограничной мембраной
3. Перикарионы псевдоуниполярных чувствительных нейронов окружены:
(A) олигодендроцитами
(Б) астроцитами
(B) шванновскими клетками
(Г) клетками-сателлитами
(Д) фибробластами
4. В мышцу конечности ввели маркёр, который был захвачен нервными терминалями и транспортирован в перикарионы. В каких нейронах можно обнаружить маркёр, если перед его введеннем были перерезаны передние корешки спинного мозга?
(A) Мотонейроны спинного мозга
(Б) Вставочные нейроны в спинном мозге
(B) Чувствительные нейроны спинномозговых узлов
(Г) Центральные нейроны вегетативной нервной системы
(Д) Зернистые клетки коры мозжечка
5. Путь проведения болевых импульсов. Какой нейромедиатор работает в синапсах между терминалью центрального отростка чувствительного нейрона и нейроном спиноталамического пути?
(A) Ацетилхолин
(Б) Норадреналин
(B) Энкефалин
(Г) Вещество P
(Д) Дофамин
6. Через какие рецепторы в терминали центрального отростка чувствительного нейрона подавляется секреция медиатора из этой терминали?
(A) Ацетилхолина
(Б) Норадреналина
(B) Энкефалина
(Г) Вещества P
(Д) Дофамина

7. Локализация перикарионов нейронов, образующих синапсы в скелетных мыш-

 цах конечностей:(А) передние рога спинного мозга
(Б) ганглии симпатической цепочки
(B) V слой двигательной коры
(Г) спинномозговой узел
(Д) ганглионарный слой мозжечка
8. Информацию из коры мозжечка выводят:
(А) аксоны клеток-зёрен, образующие клубочки мозжечка
(Б) аксоны клеток Пуркинье́
(B) лазящие волокна
(Г) дендриты клеток Пуркинье́
(Д) моховидные волокна
9. К структурам, образующим синапсы с клетками Пуркинье́, относятся все, КРОМЕ:
(А) дендритов клеток-зёрен
(Б) дендритов ззёздиатых клеток
(В) лазящих волокон
(Г) дендритов корзинчатых клеток
(Д) моховидных волокон
10. Клубочки мозжечка содержат все структуры, КРОМЕ:
(A) терминалей дендритов клеток-зёрен
(Б) дендритов звёздчатых клеток
(B) аксонов клеток Го́льджи II типа
(Г) дендритов клеток Го́лдджи II типа
(Д) окончаний моховидных волокон
11. Аксоны каких нейронов двигательнсй коры образуют пирамидный путь?
(A) Веретеновидные
(Б) Клетки Бе́ча
(B) Зернистые
(Г) Звёздчатые
(Д) Горизонтальные
12. Укажите локализацию перикарионов постганглионарных нейронов симпатического отдела вегетативной нервной системы:
(A) ганглий симпатической цепочки
(Б) спинномозговой узел
(B) боковые рога спинного мозга
(Г) задние корешки спинного мозга
(Д) ядра серого вещества продолговатого и среднего мозга
13. Укажите локализацию перикарионов преганглионарных нейронов симпатического отдела вегетативной нервной системы:
(A) серое вещество спинного мозга
(Б) ганглий симпатической цепочки
(B) передние корешки спинного мозга
(Г) интрамуральные нервные сплетения
(Д) задние корешки спинного мозга

Пояснение. Каждый из нижеприведённых и пронумерованных вопросов 14-21 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:
A - если правильны ответы 1, 2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны ответы $1,2,3$ и 4
14. Нейроны спинномозговых узлов происходят из:
(1) нервной трубки
(2) вентральной эктодермы
(3) эктодермальных плакод
(4) нервного гребня
15. Эпе́ндимная глия:
(1) выстилает центральный канал спинного мозга
(2) имеет реснички
(3) секретирует цереброспинальную жидкость
(4) танициты направляют миграцию нейробластов

16. Мозжечок:

(1) наружный слой коры - молекулярный
(2) аксоны клеток Пуркинье́ направляются в белое вещество
(3) корзинчатые клетки расположены в молекулярном слое
(4) клубочек мозжечка окружён соединительнотканной капсулой
17. Аксоны клеток-зёрен образуют синапсы с дендритами:
(1) клеток Пуркинье́
(2) корзинчатых клеток
(3) звёздчатьхх клеток
(4) клеток Го́льджи II типа
18. Модуль коры больших полушарий головного мозга:
(1) пронизывает всю толщу коры
(2) связан с соседним модулем коллатералями дендритов и аксонов
(3) включает более сотни тысяч синаптически связанных нейронов
(4) представлен белым веществом
19. Что входит в состав передних корешков спинного мозга?
(1) Аксоны мотонейронов
(2) Центральные отростки чувствительных нейронов спинномозговых узлов
(3) Аксоны нейронов боковых рогов
(4) Периферические отростки чувствительных нейронов спинномозговых узлов
20. Аксоны преганглионарных нейронов симпатического отдела вегетативной нервной системы проходят в составе:
(1) заднего корешка спинного мозга
(2) переднего корешка спинного мозга
(3) спинномозгового узла
(4) белой соединительной ветви
21. При болезни Альцха́ймера происходит:
(1) отложение амилоида во внеклеточном пространстве мозга
(2) дегенерация части нейронов и их отростков
(3) нарушение структуры цитоскелета нейронов
(4) образование из клеток микроглии и астроцитов амилоидной бляшки

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - Г

Нейроны, в т.ч. и нейроны ЦНС, образуют статическую клеточную популяцию, поэтому они не делятся. Промежуточные филаменты (нейрофиламенты) состоят из белков нейрофиламентного триплета. Другой элемент цитоскелета - микротрубочки, они имеют прямое отношение к реализации аксонного транспорта. Белки миелина в ЦНС синтезируют олигодендроциты.

2. Іравильный ответ - В

Состав нервной трубки: внутренняя пограничная мембрана, эпе́ндимный слой, плащевой (мантийный) слой, краевая вуаль, наружная пограничная мембрана. Матричные клетки эпе́ндимного слоя - источник почти всех клеток ЦНС. Предшественники эпе́ндимной глии дифференцируются из матричных клеток и не выселяются из эпе́ндимного слоя нервной трубки. Они дифференцируются in situ в эпендимоциты, выстилающие желудочки головного мозга и центральный канал спинного мозга. Из клеток эпеєдимы развивается доброкачественная опухоль - эпендимо́ма. Встречается и резко злокачественный вариант (анапластическая эпендимо́ма).

3. Іравильный ответ - Г

Перикарионы псевдоуниполярных чувствительных нейронов в спинномозговом узле окружены клет-ками-сателлитами. Эти клетки рассматривают как аналоги шванновских клеток, с которыми они имеют общий генез (происходят из нервного гребня) и сходную функцию.

4. Правильный огвет - B

Введённый в мышду маркёр захватывается терминалями чувствительных (афферентных) и двигательных (эфферентных) нервных волокон. Двигательные волокна проходят в составе передних корешков спинного мозга, а чувствительные - в составе задних. При перерезке передних корешков спинного мозга (следовательно, и двигательных нервных волокон) маркёр ретроградно транспортируется по периферическим отросткам псевдоуниполярных чувствительных нейронов в их перикарионы, расположенные в спинномозговых узлах.

5. Правильный ответ - Г

Спиноталамический путь латеральный (tractus spinothalamicus lateralis) - главный путь проведения болевой чувствительности. Центральные ветви псевдоуниполярных нейронов спинномозговых узлов входят в спинной мозг через латеральные отделы задних корешков и, поднявшись в спинном мозге на 1-2 сегмента, образуют синапсы с нейронами рола́ндова студенистого вещества. Аксоны этих нейронов образуют латеральный спиноталамический путь. Они идут через переднюю спайку на противоположную сторону и поднимаются в латеральных отделах боковых канатиков к таламусу. Спиноталамические пути проходят через ствол мозга и заканчиваются в вентролатеральных ядрах таламуса противоположной стороны. 20% псевдоуниполярных нейронов спинномозговых узлов передают возбуждение со своих центральных отростков на нейроны спиноталамического пути при помощи нейромедиатора пептидной природы - вещества P. Через рецепторы опиоидных пептидов, встроенных в мембрану терминали центрального отростка чувствительного нейрона, осуществляются блокирование секреции вещества Р и снятие болевых ощущений. Источником опиоидного пептида энкефалина служит вставочный нейрон спинного мозга, из отростков которого и секретируется пептид.

6. Правильный ответ - B

Из отростков вставочных нейронов спинного мозга, контактирующих в спинном мозге с терминалями центральных отростков чувствительных нейронов спинномозговых узлов, секретируется энкефалин. Этот нейромедиатор связывается с опиоидными рецепторами в пресинаптической мембране терминали отростка чувствительного нейрона, тормозит секрецию вещества \mathbf{P} из чувствительного нейрона и проведение болевых импульсов.

7. Правильный ответ - А

Аксоны мотонейронов, перикарионы которых расположены в передних рогах спинного мозга, достигают скелетных мышц конечностей, где образуют нервно-мышечные синапсы. Мотонейроны образуют

несколько отдельных скоплений в пределах пластинки IX. Медиальная группа ядер прослежена по всей длине мозга. В ней различают более крупные переднемедиальные ядра в верхних шейных, верхних грудных и некоторых пояснично-крестцовых сегментах и заднемедиальные ядра, более выраженные в утолщениях мозга. Мотонейроны медиальной группы ядер иннервируют аксиальную мускулатуру. Остальная мускулатура получает эфферентную иннервацию от мотонейронов латеральной группы ядер. α-Мотонейроны холинергические. Небольшое количество мелких нейронов передних рогов содержит γ-аминомасляную кислоту.

8. Правильный ответ - Б

Информацию из коры мозжечка выводят аксоны клеток Пуркинье́ - единственные эфферентные волокна, выходящие из коры мозжечка. Из различных отделов мозга в кору мозжечка входят многочисленные волокна. В зернистом слое моховидные волокна ветвятся и формируют концевые розетки, вступающие в контакт с дендритами клеток-зёрен, дендритами и аксонами клеток Го́льджи II типа в клубочках мозжечка. Лазящие волокна заканчиваются в молекулярном слое на дендритах клеток Пуркинье́. На одну клетку Пуркинье́ приходится одно лазящее волокно.

9. Правильный ответ - Д

С перикарионами или отростками клеток Пуркинье́ образуют синапсы дендриты клеток-зёрен, дендриты звёздчатых клеток, лазящие волокна, дендриты корзинчатых клеток. Моховидные волокна не образуют синапсов с клетками Пуркинье́. Они проникают в зернистый слой, где вступают в контакты с аксонами и дендритами клеток Го́льджи II типа.

10. Правильный ответ - Б

Скопление терминальных ветвлений отростков различных нейронов мозжечка и моховидных волокон образует клубочек мозжечка, окружённый капсулой из глиальных клеток. Вокруг клубочка расположены скопления клеток-зёрен. Клубочки включают розетки - окончания моховидных волокон, птичьи лапки - терминали дендритов клеток-зёрен, аксоны клеток Го́льджи II типа (формируют аксо-аксональные синапсы) и часть разветвлений дендритов клеток Го́льджи II типа. Дендриты звёздчатых клеток образуют синапсы с аксонами клеток-зёрен в молекулярном слое, проходящими параллельно поверхности мозжечка.

11. Правильный ответ - Б

Нисходящий корково-спинномозговой путь передний (пирамидный путь передний, tractus corticospinalis ventralis) образован аксонами пирамидных нейронов - клеток Беца, расположенных в двигательной зоне коры, в предцентральной извилине (gyrus precentralis). Волокна пути проходят через внутреннюю капсулу и передний канатик, заканчиваются в передних рогах, посегментно перекрещиваясь. Нисходящий корково-спинномозговой путь латеральный (пирамидный путь латеральный, tractus corticospinalis lateralis) также начинается в коре предцентральной извилины, проникает через внутреннюю капсулу и после перекрёста в продолговатом мозге проходит в боковом канатике, заканчиваясь в передних рогах.

12. Правильный ответ - A

Перикарионы постганглионарных нейронов симпатического отдела вегетативной нервной системы расположены в ганглиях симпатической цепочки. Нейроны адренергические, нейромедиатор норадреналин. Их аксоны иннервируют различные органы (например, миокард, ГМК сосудов и внутренних органов). Постганглионарные симпатические волокна, участвующие в иннервации сердца, образованы аксонами нейронов ганглиев симпатической нервной цепочки (звёздчатый и отчасти верхний шейный симпатические узлы). Они подходят к органу в составе нескольких сердечных нервов и равномерно распределяются по всем отделам сердца.

13. Правильный ответ - A

Перикарионы холинергических преганглионарных нейронов симпатического отдела вегетативной нервной системы расположены в сером веществе спинного мозга (nucleus intermediolateralis). Ядро расположено на уровне $\mathrm{Th}_{1}-\mathrm{L}_{2}$ или L_{3} в пластинке VII. Веретеновидные нейроны ядра дают начало

преганглионарным симпатическим волокнам, выходящим из спинного мозга через передние корешки и проходяшим через передние соединительные ветви.

14. Правильный ответ - Г

Псевдоуниполярные чувствительные нейроны спинномозговых узлов происходят из нервного гребня. Расположенные латерально от зачатка нервного гребня участки дорсальной эктодермы в краниальном отделе зародыша носят название эктодермальных нейрогенных плакод. Из материала плакод развиваются чувствительные нейроны V, VII, IX и X ганглиев черепных нервов, нейроны обонятельного эпителия. Из матричных клеток в эпе́ндимном слое нервной трубки дифференцируются нейроны ЦНС и глиальные клетки.

15. Правильный ответ - Д

Эпе́ндимная глия выстилает центральный канал и желудочки мозга. Клетки связаны взаимными интердигитациями, соединены плотными контактами и образуют барьер проницаемости. Эпителиоидные эпенндимные клетки имеют кубическую форму и снабжены ресничками и микроворсинками на обращённой к просвету поверхности. Ядро овальной формы расположено в базальной части кпеток, хорошо развиты комплекс Гольджи и гладкая эндоплазматическая сеть. В некоторых отделах желудочков мозга присутствуют атипичные эпе́ндимные клетки. Многослойная эпе́ндима встречается у плода и в раннем постнатальном периоде, а у взрослого человека сохраняется в III желудочке над nucleus tuberis infundibularis, в некоторых отделах водопровода мозга и бокового углубления V желудочка. Другая разновидность эпе́ндимной глии - танициты. Эти клетки имеют отходящий от базальной части клетки длинный отросток с крупными гранулами. Отросток вступает в контакт со стенкой кровеносных сосудов. Модифицированные эпе́ндимные клетки выстилают сосудистую покрышку (tela chorioidea) и сосудистое сплетение желудочков мозга (plexus chorioideus) и секретируют цереброспинальную жидкость.

16. Правильный ответ - A

Извилина мозжечка содержит узкую пластинку белого вещества, полностью покрытую серым веществом (кора мозжечка), в котором различают три слоя: наружный - молекулярный, средний ганглионарный и внутренний - зернистый. Молекулярный слой содержит звёздчатые и корзинчатые клетки. Расположенный глубже ганглионарный слой состоит из перикарионов клеток Пуркинье́, аксоны которых выходят из коры мозжечка в белое вещество. В глубине белого вещества мозжечка лежат скопления нейронов - ядра мозжечка. Аксоны клеток Пуркинье́, единственные эфферентные волокна, выходящие из коры мозжечка, образуют синаптические контакты с нейронами ядер мозжечка. Небольшая часть аксонов клеток Пуркинье́ направляется в вестибулярное ядро. Коллатерали аксонов этих нейронов возвращаются обратно в ганглионарный слой и поднимаются в глубокие части молекулярного слоя, вступая в контакт с клетками Го́льджи II типа и с телами и дендритами соседних клеток Пуркинье́. Клубочки мозжечка окружены капсулой из глиальных клеток.

17. Правильный ответ - Д

Перикарионы клеток-зёрен расположены в зернистом слое коры мозжечка. Их длинные аксоны. поднимаются в молекулярный слой, где Т-образно разветвляясь, образуют параллельные волокна. Здесь они образуют синапсы с дендритами клеток Гуркинье́, корзинчатьх клеток, звёздчатьхх клеток и клеток Го́льджи II типа. Дендриты клеток-зёрен вступают в синаптические контакты с моховидными волокнами в составе клубочков мозжечка.

18. Правильный ответ - A

Модуль коры больших полушарий головного мозга пронизывает всю толщу коры, связан с соседними модулями при помощи коллатералей дендритов и аксонов, включает более 100 тысяч синаптически связанных нейронов. Существует представление о вертикальных (радиальных) связях от одной до трёх сотен нейронов коры, в совокупности образующих некую функциональную единицу, называемую цилиндром. Подобная структура может достигать в диаметре нескольких сотен микрон. Цилиндры наиболее наглядно прослеживаются в сенсорных полях коры, где они получают информацию

от определённых групп афферентных нейронов. Границы между цилиндрами в двигательной коре размыты.
19. Правильный ответ - Б

Передние корешки спинного мозга содержат аксоны мотонейронов и аксоны преганглионарных нейронов вегетативной нервной системы, перикарионы которых расположены в боковых рогах. Клетки nucleus intermediolateralis, расположенного в боковых столбах в пределах пластинки VII, являются преганглионарными симпатическими нейронами. Их аксоны выходят из спинного мозга в составе передних корешков на уровне $\mathrm{Th}_{1}-\mathrm{L}_{3}$. Крестцовое парасимпатическое ядро Онуфровича, также расположенное в тех же боковых столбах в пределах пластинки VII, но на уровне $S_{2}-S_{4}$, содержит преганглионарные парасимпатические нейроны. Их аксоны проходят в передних корешках крестцового отдела. Задние корешки содержат центральные отростки псевдоуниполярных нейронов. Периферические отростки чувствительных нейронов спинномозговых узлов иннервируют кожу, мышцы и внутренние органы.

20. Правильныв் ответ - В

Аксоны преганглионарных нейронов симпатического отдела вегетативной нервной системы проходят в составе передних корешков спинного мозга и белых соединительных ветвей.

21. Правильный ответ - Д

При болезни Альихаймера в ткани мозга образуются многочисленные бляшки - отложения β-ами лоидного белка, вызывающие дегенерацию нейронов и их отростков. В состав амилоидной бляшки входят клетки микроглии и астроциты. Одновременно нарушается организация цитоскелета нейронов. В цитоплазме нейронов при болезни Альихаймера найдена модифицированная форма τ-белка, формирующего волокна из пары спиральных нитей в составе плотных аномальных структур, нейрофибриллярных клубков.

8.4. Органы чувств

Организм воспринимает раздражения и получает информацию из внешней и внутренней среды при помощи специализированных сенсорных структур. Это тка́невые рецепторы и органы чувств. Тка́невые рецепторы ответственны за восприятие тактильных (прикосновение, давление, вибрация, растяжение), температурных, болевых и некоторых других сигналов. Органы чувств - сенсорные структуры для восприятия зрительных, слуховых, обонятельных и вкусовых раздражений. Соответственно это органы зрения, слуха, обоняния и вкуса.

I. ЗРЕНИE

Орган зрения состоит из глазного яблока, соединённого через зрительный нерв с мозгом, и включает вспомогательный аппарат в виде век, слёзной железы и поперечнополосатых глазодвигательных мышц.

1. Развитие (рис. 8-43 и 8-44). Зачаток глаза появляется у 22 -дневного эмбриона как пара неглубоких желобков в выростах переднего мозга. После закрытия нейропоров эти выросты образуют глазные пузыри.
a. Глазные пузыри связаны с эмбриональным мозгом при помощи глазных стебельков. Глазные пузыри вступают в контакт с эктодермой будущей лицевой части головы и индуцируют в ней развитие хрусталика. Инвагинация стенки глазного пузыря приводит к формированию двухслойного глазного бокала.
б. Глазной бокал
(1) Наружный слой глазного бокала образует пигментный слой сетчатки.
(2) Внутренний слой формирует сетчатку. Аксоны дифференцирующихся ганглиозных клеток прорастают в глазной стебелёк и входят в состав зрительного нерва.
в. Сосудистая оболочка формируется из окружающей глазной бокал мезенхимы.

Рис. 8-43. Развитие глаза. А - 22 -дневный эмбрион; Б - 4 -недельный эмбрион; В - эмбрион длиной 5 мм [из Sadler TW, 1990]

Рис. 8-44. Развитие глаза. А - 6-недельный зародыш; Б - 7-недельный зародыш [из Mann IC, 1974]
Эктомезенхима. Особое значение имеют выселяющиеся из нервного гребня клетки т.н. эктомезенхимы, участвующие в образовании склеры и цилиарной мышцы, а также дифференцирующиеся в эндотелиальные клетки и фибробласты роговицы.
г. Эпителий роговицы развивается из эктодермы.
д. Хрусталик. Зачаток хрусталика отделяется от эктодермы и превращается в хрусталиковый пузырёк, над которым смыкается эктодерма. При развитии хрусталикового пузырька изменяется толщина его стенок, в связи с чем появляются более тонкий передний эпителий и комплекс плотно упакованных хрусталиковых волокон на задней поверхности хрусталикового пузырька. Хрусталиковые волокна удлиняются и заполняют полость пузырька. В эпителиальных клетках хрусталика синтезируются специфические для хрусталика белки - кристаллины. На начальных стадиях дифференцировки клетки хрусталика синтезируют небольшое количество α - и β-кристаллинов. По мере дифференцировки удлинённые клетки хрусталика, кроме α - и β-кристаллинов, начинают синтезировать γ-кристаллины.
2. Глазное яблоко. Стенка глазного яблока образована оболочками: в передней части роговица, в задней - сетчатка, сосудистая оболочка и склера (рис. 8-58).
a. Роговица - прозрачная оболочка передней стенки глаза, состоит из пяти слоёв. Лим6 - граница между прозрачной роговицей и непрозрачной склерой.
Слои роговицы (рис. 8-58)
(a) Многослойный плоский неороговевающий эпителий.
(б) Передняя пограничная мембрана (боуменова оболочка) - не содержащий клеток гомогенный слой основного вещества и неупорядоченно ориенти. рованных тонких коллагеновых и ретикулиновых волокон; поддерживает форму роговицы.
(в) Собственное вещество представлено правильно расположенными коллагеновыми пластинками и уплощёнными фибробластами.
(г) Задняя пограничная мембрана (десцеметова оболочка) - прозрачный слой роговицы, расположен между собственным веществом и эндотелием задней поверхности роговицы, состоит из коллагеновых волокон (коллаген типа VIII) и аморфного вещества.
(д) Эндотелий ограничивает спереди переднюю камеру глаза.
б. Склера - наружная непрозрачная оболочка глазного яблока. Склера построена из плотных тяжей коллагеновых волокон, между которыми находятся уплощённой формы фибробласты. В месте соединения склеры с роговицей расположены небольшие сообщающиеся полости, в совокупности образующие щле́ммов канал, обеспечивающий отток жидкости из передней камеры глаза.
в. Сосудистая оболочка осуществляет питание сетчатки. Эта оболочка состоит из нескольких слоёв (пластинок). Радужная оболочка - передний вырост сосудистой оболочки. Другая часть сосудистой оболочки, цилиарное тело, участвует в аккомодации зрения, регулируя форму хрусталика.
(1) Пластинки
(a) Надсосудистая. Расположена на границе со склерой, состоит из рыхлой волокнистой соединительной ткани.
(б) Сосудистая. Содержит сплетение артерий и вен. В рыхлой соединительной ткани располагаются пигментные клетки и ГМК.
(в) Хориокапиллярная. Образована сплетением капилляров синусоидного типа.
(r) На границе с сетчаткой располагается базальная пластинка.
(2) Радужная оболочка - продолжение сосудистой оболочки глаза, расположена между роговицей и хрусталиком, разделяет переднюю и заднюю камеры глаза.
(a) Слои (от передней к задней камере): эндотелий, наружный пограничный, сосудистый, внутренний пограничный, пигментный.
(б) Мышцы. В состав радужки входят суживающая (циркулярная) и расширяющая зрачок мышцы. При раздражении парасимпатических (холинергических) нервных волокон зрачок суживается, симпатическая стимуляция приводит к расширению зрачка.
(в) Цвет глаз определяют количество и тип пигмента в радужной оболочке. Например, в глазах голубого цвета мало меланоцитов и соответственно пигмента. Альбинизм (см. главу 18).
(3) Цилиарное тело. В области угла глаза сосудистая оболочка утолщается, образуя цилиарное тело, имеющее на срезе вид треугольника, обращённого основанием в переднюю камеру. Основную массу цилиарного тела занимает цилиарная мышца, играющая важную роль в аккомодации глаза. В её составе ГМК проходят в трёх взаимно перпендикулярных направлениях. От цилиарного тела отходят по направлению к хрусталику цилиарные отростки, к которым прикрепляется циіннова связка. При сокращении цилиарной мышцы циннова связка расслабляется, и выпуклость хрусталика увеличивается.
r. Хрусталик имеет вид двояковыпуклого тела. Его передняя стенка состоит из однослойного кубического эпителия, который по направлению к экватору становится выше. Эпителиальные клетки хрусталика связаны щелевыми контактами. Удлинённые веретенообразной формы эпителиальные клетки, достигшие состояния терминальной дифференцировки, содержат кристаллины и с возрастом утрачивают ядра и органеллы. Это прозрачные хрусталиковые волокна, составляющие основную часть хрусталика. Капсула хрусталика - толстая базальная мембрана. Прозрачность хрусталика и/ или его капсулы нарушается при катаракте.
д. Стекловидное тело - прозрачная среда глаза, заполняет полость между хрусталиком и сетчатой оболочкой; стекловидное тело - гель, содержащий воду, коллаген, белок витреин и гиалуроновую кислоту. Через стекловидное тело от сетчатки к хрусталику проходит канал - остаток эмбриональной сосудистой системы глаза (рис. 8-44).
e. Сетчатая оболочка (сетчатка) - внутренняя оболочка глаза, имеет зрительный отдел, по зубчатому краю переходящий в слепой отдел, покрывающий сзади цилиарное тело и радужку. У заднего края оптической оси глаза сетчатка имеет округлое жёлтое пятно диаметром около 2 мм. Центральная ямка - углубление в средней части жёлтого пятна, место наилучшего восприятия. Зрительный нерв выходит из сетчатки медиальнее жёлтого пятна. Здесь образуется диск зрительного нерва (слепое пятно). В центре диска имеется углубление, в котором видны питающие сетчатку сосуды, выходящие из зрительного нерва.
(1) Слои
(a) Пигментный. Клетки полигональной формы, прилежащие к сосудистой оболочке. Одна пигментная клетка взаимодействует с наружными сегментами десятков фоторецепторных клеток - палочек и колбочек (рис. 8-45).
(б) Наружный ядерный. Ядросодержащие части фоторецепторных клеток. Колбочки концентрируются в области жёлтого пятна. Глазное яблоко организовано таким образом, что на колбочки падает центральная часть светового пятна от визуализируемого объекта. По периферии от жёлтого пятна расположены палочки.
(в) Наружный сетчатый. Здесь осуществляются контакты внутренних сегментов палочек и колбочек с дендритами биполярных клеток.
(г) Внутренний ядерный. Здесь располагаются биполярные клетки, связывающие палочки и колбочки с ганглиозными клетками, а также горизонтальные и амакринные клетки. Перикарионы амакринных клеток расположены во внутренней части внутреннего ядерного слоя.

Рис. 8-45. Сетчатка. Стрелками слева обозначены направления светового потока и возбуждения. Пигментный эпителий окружает наружные сегменты фотсрецепторных клеток, образующих синаптические контакты с биполярными нейронами. Информация от биполярных клеток передаётся ганглиозным клеткам и по их аксонам, образующим зрительный нерв, уходит в мозг. Промежутки между нейронами заполняют крупные мюллеровские клетки. Их наружные отростки заканчиваются на границе между наружными и внутренними сегментами фоторецепторных клеток [нз Boycott, Dowling, 1966]
(д) Внутренний сетчатый. В нём биполярные клетки контактируют с ганглиозными клетками, амакринные клетки выступают в качестве вставочных нейронов. Популярна концепция о том, что ограниченное число биполярных клеток передает информацию 16 типам ганглиозных клеток при участии не менее 20 типов амакринных клеток.
(e) Ганглиозный слой содержит ганглиозные нейроны. Общая схема передачи информации в сетчатке такова: рецепторная клетка \rightarrow биполярная клетка \rightarrow ганглиозная клетка и одновременно амакринная клетка \rightarrow ганглиозная клетка.
(2) Фоторецепторные клетки - палочки (рис. 8-46) и колбочки. Различают центральное и периферическое зрение, что связано с характером распределения в сетчатке палочек и колбочек. Периферические отростки фоторецепторных клеток состоят из наружного и внутреннего сегментов, соединённых ресничкой.
(a) Наружный сегмент имеет множество уплощённых замкнутых дисков, содержащих зрительные пигменты: родопсин - в палочках; красный, зелёный и синий пигменты - в колбочках.
(6) Внутренний сегмент заполнен митохондриями и содержит базальное тельце, от которого в наружный сегмент отходит 9 пар микротрубочек.
(в) Центральное зрение, а также острота зрения реализуются колбочками.
(д) Периферическое зрение, а также ночное зрение и восприятие подвижных объектов - функции палочек.
(e) Цветовосприятие - функция колбочек. Существует три типа колбочек, каждый из которых содержит только один из трёх разных (красный, зелёный и синий) зрительных пигментов.
(i) Зрительный пигмент состоит из апопротеина (опсин), ковалентно связанного с хромофором (11-цис-ретиналь или 11 -цис-дегидроретиналь).
(ii) Спектральная чувствительность красного, зелёного и синего зрительных пигментов различна - соответственно 560,535 и 440 нм - и определяется первичной структурой апопротеина.

(iii) Трихромазйя - возможность различать любые цвета, определяется присутствием в сетчатке всех трёх зрительных пигментов (для красного, зелёного и синего - первичные цвета). Эти основы теории цветного зрения предложил То́мас Янг (1802).
(iv) Дихромази́и - дефекты цветового восприятия (преимущественно у мужчин; например, в Европе разные дефекты у мужчин составляют 8% общей популяции) по одному из первичных цветов - подразделяют на протанопии, дейтанопии и тританопии (om $2 p$. первый, второй и третий [имеются в виду порядковые номера первичных цветов: соответственно красный, зелёный, синий])
[I] Протанопия (страдает восприятие красного, примерно 25% случаев цветовой слепоты) развивается при связанном с хромосомой X наследовании генного дефекта.
[II] Дейтанопия (цветовая слепота по восприятию зелёного, около 75% всех случаев; связанное с хромосомой X наследование, полиморфизм гена).
[III] Тританопия (страдает преимущественно восприятие фиолетового цвета, дефектное зрение по синему и жёлтому). Аутосомное доминантное наследование дефектного гена (7q31.3-q32).

(3) Нейроны

(a) Горизонтальные клетки. Их перикарионы расположены в наружной части внутреннего ядерного слоя, а отростки входят в область синапсов между фоторецепторными и биполярными клетками. Горизонтальные клетки получают информацию от колбочек и передают её также колбочкам. Соседние горизонтальные клетки связаны между собой щелевыми контактами.
(б) Амакринные клетки. Их перикарионы находятся во внутренней части внутреннего ядерного слоя в области синапсов между биполярными и ганглиозными клетками.
(в) Ганглиозные клетки - крупные мультиполярные нейроны многих разновидностей. Их аксоны образуют зрительный нерв.
(4) Нейромедиаторы. Нейроны сетчатки синтезируют ацетилхолин, дофамин, L-глутаминовую кислоту, глицин, γ-аминомасляную кислоту. Некоторые нейроны содержат серотонин, его аналоги (индоламины) и нейропептиды.
(5) Функциональные особенности
(a) Биполярные клетки реагируют на контрастность изображения. Некоторые биполяры сильнее реагируют на цветной, нежели на чёрно-белый контраст. Одни получают информацию преимущественно от палочек, другие - от колбочек.
(6) Ганглиозные клетки реагируют на множество свойств зрительного объекта (например, на светлые и тёмные объекты, однородность освещения, цвет объекта, его ориентацию).
(6) Центральная ямка. В области центральной ямки расположены преимущественно колбочки. Каждая колбочка центральной ямки образует синапс только с одним биполярным нейроном. Внутренний ядерный и ганглиозный слои в области центральной ямки истончены.
(7) Глия. Кроме нейронов, сетчатка содержит крупные клетки радиальной глии мюллеровские клетки (рис. 8-45). Их ядра расположены на уровне центральной части внутреннего ядерного слоя. Наружные отростки заканчиваются микроворсинками, образуя наружный пограничный слой. Внутренние отростки имеют расширение (ножку) во внутреннем пограничном слое на границе со стекловидным телом.

Функция. Глиальные клетки играют важную роль в регуляции ионного гомеостаза сетчатки. В частности, они снижают концентрацию K^{+}во внеклеточном

пространстве, где концентрация этих ионов при световом раздражении резко увеличивается. Плазматическая мембрана мюлеровских клеток в областн ножки характеризуется высокой проницаемостью для ионов K^{+}, выходящих из клетки. Мюллеровская клетка захватывает K^{+}из наружных слоёв сетчатки и направляет поток этих ионов через свою ножку в жидкость стекловидного тела.
(8) Механизм фотовосприятия. В состав дисков фоторецепторных клеток входят зрительные пигменты, в т.ч. родопсин палочек.
(a) Родопсин (рис. 8-47) состоит из белковой части (опсин) и хромофора - 11 -цисретиналя, под действием фотонов переходящего в транс-ретиналь. Мутации генов, кодирующих синтез опсинов, приводят к развитию пигментного ретинита и ночной (куриной) слепоты. Описано около 40 мутаций генов опсинов.
(б) Каскад фотоактивации (рис. 8-48). При попадании квантов света на наружные сегменты в фоторецепторных клетках последовательно происходят следующие события: активация родопсина в результате фотоизомеризации \rightarrow каталитическая активация G-белка (G, трансдуцин) [глава 2 I B 2 а (3) (а) (i)]

Рис. 8-48. Трансмембранный белок родопсин и его связь с G-белком (трансдуцин) в плазмолемме фоторецепторных клеток. Возбуждённый фотонами родопсин активирует G-белок. При этом гуанозиндифосфат, связанный с α-CE G -белка, заменяется на гуанозинтрифосфат. Отщеплённые α-СЕ и β-СЕ действуют на фосфодиэстеразу и заставляют её превращать цГМФ в гуанозинмонофосфат. Это закрывает Na^{+}-каналы, и ноны Na^{+}не могут попасть в клетку, что приводит к её гиперполяризации. \mathbf{R} - родопсин; α, β и γ - CE G-белка; A - агонист (в данном случае кванты света); E - фермент-эффектор фосфодиэстераза [из Dratz EA et al, 1993]

родопсином \rightarrow активация фосфодиэстеразы при связывании с $\mathrm{G}_{1} \alpha \rightarrow$ гидролиз цГМФ цГМФ-фосфодиэстеразой \rightarrow переход цГМФ-зависимых Na^{+}-каналов из открытого состояния в закрытое \rightarrow гиперполяризация плазмолеммы фоторецепторной клетки \rightarrow передача сигнала на биполярные клетки.
(i) Активация родопсина в результате фотоизомеризации. Свет, поглощаемый родопсином, инициирует ответ в каскаде цГМФ.
(ii) Каталитическая активация G-белка (G_{t}, трансдуцин) родопсином. Активированный родопсин взаимодействует с G-белком (состоит из трёх CE). α CE G-белка активирует цГМФ-фосфодиэстеразу.
(iii) Активация фосфодиэстеразы при связывании с $\mathbf{G}_{\mathbf{1}} \boldsymbol{\alpha}$. Увеличение активности цГМФ-фосфодиэстеразы снижает концентрацию цГМФ, что сопровождается закрытием ионных каналов.
(iv) Гиперполяризация плазмолеммы фоторецепторной клетки - следствие закрытия ионных каналов. В результате рецепторная клетка гиперполяризуется, что служит сигналом для изменения характера секреции медиатора в синапсе между внутренним сегментом рецепторной клетки и дендритом биполярной клетки. Если рецепторные клетки отвечают на свет гиперполяризацией, то другие типы нейронов сетчатки при этом гиперполяризуются или деполяризуются.
(в) Темновой ток. В темноте ионные каналы в клеточной мембране рецепторных клеток поддерживаются в открытом состоянии за счёт связывания белков ионных каналов с цГМФ. Потоки внутрь клетки Na^{+}и Ca^{2+} через открытые каналы обеспечивают темновой ток.

II. ОБОНЯНИЕ

А. Анатомия. Периферический отдел обонятельного анализатора представлен обонятельным полем (обонятельная выстилка, area olfactoria), которое занимает среднюю часть верхней носовой раковины и соответствующий ей участок слизистой оболочки перегородки носа. Обонятельный эпителий содержит рецепторные клетки (рис. 8-49). Их центральные отростки (аксоны) передают информацию в обонятельную луковицу. Обонятельные рецепторные клетки окружены опорными клетками. В подэпителиальной соединительной ткани расположены концевые отделы бо́уменовых желёз, кровеносные сосуды и пучки безмиелиновых нервных волокон обонятельного нерва. Слизь, секретируемая боуменовыми железами, покрывает поверхность обонятельной выстилки. В процессе хемовосприятия участвуют обонятельные реснички, погружённые в слизь. Обонятельный нерв - совокупность тонких обонятельных нитей (fila olfactoria), проходящих через отверстия решётчатой кости в мозг к обонятельным луковицам. Кроме безмиелиновых волокон, в соединительнотканном слое обонятельной выстилки проходят отдельные миелиновые волокна тройничного нерва.

Б. Рецепторная клетка

1. Строение. Тело обонятельной клетки содержит многочисленные митохондрии, цистерны эндоплазматической сети с рибосомами, элементы комплекса Го́льджи, лизосомы. Обонятельные клетки, кроме центрального, имеют короткий периферический отросток (дендрит), заканчнвающийся на поверхности обонятельного эпителия сферическим утолщением - обонятельной булавой диаметром 1-2 мкм. В ней присутствуют митохондрии, мелкие вакуоли и базальные тельца для отходящих от вершины булавы нескольких обонятельных волосков длиной до 10 мкм, имеющих строение типичных ресничек.
2. Функция. Рецепторные клетки обонятельной выстилки регистрируют 25-35 первичных запахов. Их комбннации образуют много миллионов воспринимаемых запахов. Обо-

Рис. 8-49. Орган обон яния. В эпителии обонятельной выстилки расположены обонятельные рецепторные нейроны. Их наружные отростки заканчиваются обонятельными булавами, от которых в разные стороны параллельно поверхности эпителия отходят обонятельные волоски. Аксоны рецепторных нейронов в составе обонятельных нитей (fila olfactoria) обонятельного нерва проходят через lamina cribrosa решётчатой кости и образуют синапсы с нейронами обонятельной луковицы (bulbus olfactorius). Многочисленные опорные клетки окружают рецепторные клетки [из Greep RO, Weiss $L, 1973$]

нятельные рецепторные нейроны в ответ на адекватную стимуляцию деполяризуются. В плазмолемму обонятельных ресничек встроены цАМФ-зависимые воро́тные ионные каналы, открывающиеся при взаимодействии с цАМФ.
а. Система цАМФ. цАМФ-зависимые воро́тные ионные каналы активируются в результате последовательности событий: взаимодействие пахучего вещества с белкомрецептором в плазмолемме обонятельных ресничек \rightarrow активация G-белка \rightarrow повышение активности аденилатциклазы \rightarrow увеличение уровня цАМФ.
б. Система инозитолтрифосфата также имеет отношение к механизму хемовосприятия в органе обоняния. При действии некоторых пахучих веществ быстро возрастает уровень инозитолтрифосфата, который взаимодействует с Ca^{2+}-каналом в плазмолемме обонятельных рецепторных нейронов. Таким образом, системы вторых посредников цАМФ и инозитолтрифосфата взаимодействуют между собой, обеспечивая лучшее различение запахов.
в. Механизм адаптации. Через цАМФ-зависимые воро́тные ионные каналы внутрь клетки проходят не только одновалентные катионы, но и Ca^{2+}, который связывается с кальмодулином. Образовавшийся комплекс Ca^{2+}-кальмодулин взаимодействует с каналом, что препятствует его активации цАМФ, в результате чего рецепторная клетка становится нечувствительной (адаптируется) к действию пахучего вещества.
3. Регенерация. Продолжительность жизнй обонятельных клеток - 30-35 дней. Обонятельные рецепторные клетки составляют исключение среди нейронов: они постоянно обновляются за счёт клеток-предшественниц, т.е. относятся к обновляющейся клеточной популяции. Это обстоятељьтво позволило использовать в эксперименте нейроны обонятельной выстилки для их трансплантации в мозг в расчёте на интеграцию регенерирующих нейронов обонятельной выстилки в структуры нейронных ансамблей. Предшественники обонятельных рецепторных клеток - базальные клетки эпителия обонятельной выстилки.
B. Опорные клетки. Среди опорных клеток различают высокие цилиндрические клетки и клетки меньших размеров, не достигающие поверхности рецепторного слоя. Цилиндрические клетки на апикальной поверхности содержат микроворсинки длиной 3-5 мкм. Кроме хорошо развитых органелл общего значения, опорные клетки в апикальной части содержат множество секреторных гранул.

III. BKYC

Периферическая часть вкусового анализатора - вкусовые почки. Они обнаружены в эпителии рта, языка, губ, переднего отдела глотки, пищевода и гортани. Их основная локализация хемочувствительные сосочки языка: грибовидные, желобоватые и листовидные.

Вкусовая почка (рис. 8-50) имеет эллипсоидную форму, высоту $27-115$ мкм и ширину 16-70 мкм. В их апикальном отделе находится заполненный аморфным веществом вкусовой канал, открывающийся на поверхность эпителия вкусовой по́рой. Почка образована $30-80$ удлинёнными клетками, тесно прилегающими одна к другой. Большинство этих клеток вступает в контакт с нервными волокнами, проникающими в почку из подэпителиального нервного сплетения, содержащего миелиновые и безмиелиновые нервные волокна. Все клеточные типы вкусовой почки образуют афферентные синапсы с нервными терминалями.

1. Генез. Развитие вкусовых почек языка протекает параллельно с прорастанием нервных волокон в эпителий. Дифференцировка почек начинается одновременно с появлением скоплений безмиелиновых нервных волокон непосредственно под областью расположения будущей почки.

Рис. 8-50. Вкусовая почка состоит из удлинённых светлых клеток различных типов. Их апикальная поверхность открывается во вкусовую по́ру на поверхности эпителиального пласта. Клетки вкусовой почки образуют синапсы с периферическими отростками чувствительных нейронов [из Krstic $R V, 1984]$
2. Структура. Клетки вкусовых почек морфологически неоднородны. Выделяют четыре типа клеток.
a. I тип. Клетки этого типа в апикальной части имеют до 40 микроворсинок, выступающих в полость вкусового канала. Верхушечная часть клеток содержит большое количество электроноплотных гранул. Цитоскелет представлен хорошо выраженными пучками микрофиламентов и микротрубочек. Часть этих структур образует компактный пучок, суженный конец которого связан с парой центриолей. Комплекс Го́льджи, имеющий отношение к образованию электроноплотных гранул, расположен над ядром. В базальной части клетки присутствуют небольшие плотные митохондрии. В этой же области сосредоточена хорошо развитая гранулярная эндоплазматическая сеть.
6. Клетки II типа имеют более светлую цитоплазму. В ней наряду с варьирующими по размерам вакуолями содержатся расширенные цистерны гладкой эндоплазматической сети. В апикальной части клетки расположены редкие мелкие микроворсинки. Встречаются мультивезикулярные тельца, лизосомы и электроноплотный материал.
в. III тип. В апикальной части присутствуют невысокие микроворсинки, центриоли и незначительное количество пузырьков диаметром до 120 нм. Гранулярная эндоплазматическая сеть развита слабо. Многочисленные уплощённые цистерны и пузырьки образуют хорошо выраженную гладкую эндоплазматическую сеть. Характерная особенность клеток - наличие в цитоплазме гранулярных пузырьков диаметром 80-150 нм, а также светлых пузырьков диаметром $30-60$ нм. Эти пузырьки, в первую очередь светлые, имеют отношение к афферентным синапсам. Гранулярные пузырьки располагаются и в других частях клетки, но всегда присутствуют в области синапсов.
r. Клетки IV типа расположены в базальной части вкусовой почки и не достигают вкусового канала. Они содержат крупное ядро и пучки микрофиламентов. Функция этих клеток остаётся неясной. Не исключено, что клетки IV типа служат предшественниками для всех типов клеток вкусовой почки.
3. Хеморецепторные клетки. Хотя контакты с афферентными волокнами образуют все типы клеток, функцию хемовосприятия связывают преимущественно с клетками типа III. В пресинаптической области вкусовых клеток гранулярные пузырьки содержат серотонин, медиатор афферентного синапса. Сладкие раздражители активируют во вкусовых рецепторных клетках аденилатциклазу, что приводит к увеличению уровня цАМФ. Горечи действуют через другой посредник, систему инозитолтрифосфата.
4. Регенерация. Во вкусовом рецепторе происходит постоянное обновление клеток. Из периферической области вкусовой почки клетки перемещаются в центральную её часть со скоростью 0,06 мкм/час. Средняя продолжительность жизни клеток вкусового рецепторного органа составляет 250 ± 50 часов. После повреждения нервов, иннервирующих вкусовые почки, последние дегенерируют, а при регенерации нервов происходит их восстановление. Результаты этих исследований дают основание полагать, что вкусовые почки находятся под нейротрофическим контролем.

IV. САУХ И РАВНОВЕСИЕ

А. Развитие (рис. 8-51 и 8-52). У 22 -дневного эмбриона на уровне ромбовидного мозга появляются парные утолщения эктодермы - слуховые плакоды. Путём инвагинации и последующего отделения от эктодермы формируется слуховой пузырёк. С медиальной стороны к слуховому пузырьку прилежит зачаток слухового ганглия, из которого вскоре дифференцируются ганглий преддверия и ганглий улитки. По мере развития в слуховом пузырьке появляются две части: эллиптический мешочек - утрикулюс (utriculus) с полукружными каналами и сферический мешочек - саккулюс (sacculus) с зачатком канала улитки.
Б. Улитка - спирально закрученный костный канал, развившийся как вырост преддверия. Улитка образует 2,5 завитка длиной около 35 мм. Базилярная (осно́вная) и вестибулярная мембраны, расположенные внутри канала улитки, делят его полость на три части: барабанная лестница (scala tympani), вестибулярная лестница (scala vestibuli) и перепончатый канал улитки (scala media, средняя лестница, улитковый ход). Эндолимфа заполняет перепончатый канал улитки (scala media), а перилимфа - вестибулярную и
 на уровне ромбовидного мозга [из Sadler TW, 1990]

Рис. 8-52. Образование слухового пузырька. А - 24 -дневный эмбрион; Б -27 -дневный эмбрион;
B - 32-дневный эмбрион [из Sadler TW, 1990]
барабанную лестницы. Барабанная лестница и вестибулярная лестница сообщаются у вершины улитки с помощью отвёрстия (геликотрема). В перепончатом канале улитки на базилярной мембране расположен рецепторный аппарат улитки - ко́ртиев (спиральный) орган.

1. Эндолимфа - вязкая жидкость, заполняет перепончатый канал улитки и соединяется через специальный канал (ductus reuniens) с эндолимфой вестибулярного аппарата. Концентрация K^{+}в эндолимфе в 100 раз больше, чем в ликворе и перилимфе; концентрация Na^{+}в эндолимфе в 10 раз меныше, чем в перилимфе.
2. Перилимфа по химическому составу близка к плазме крови и спинномозговой жидкости и занимает промежуточное положение между ними по содержанию белка.
3. Ко́ртиев орган (рис. 8-53) содержит несколько рядов волосковых клеток, связанных с текториальной (покровной) мембраной. Различают внутренние и наружные волосковые и поддерживающие клетки. Волосковые клетки - рецепторные и образуют синаптические контакты с периферическими отростками чувствительных нейронов спирального ганглия.
а. Внутренние волосковые клетки образуют один ряд, имеют расширенное основание, $30-60$ неподвижных микроворсинок - стереоцилий, проходящих через кутикулу в апикальной части. Стереоцилии расположены полукругом (или в виде буквы V), открытым в сторону наружных структур кортиева органа.
б. Наружные волосковые клетки (рис. 8-54) расположены в 3-5 рядов, имеют цилиндрическую форму и стереоцилии.
в. Поддерживающие клетки. Среди поддерживающих клеток различают внутренние фаланговые клетки, внутренние клетки-столбы, наружные фаланговые клетки, наружные клетки-столбы, клетки Гензена, клетки Клаудиуса, клетки Бёттхера. Фаланговые клетки вступают в контакт с волосковыми, располагаясь на базальной мембране. Отростки наружных фаланговых клеток проходят параллельно наружным волосковым клеткам, не соприкасаясь с ними на значительном протяжении, и на уровне апикальной части волосковых клеток вступают с ними в контакт.

Рис. 8-53. Кортиев орган. Механочувствительные волосковые клетки образуют несколько рядов: один ряд внутренних и 3-5 рядов наружных. Внутренние и наружные волосковые клетки разделены туннелем. Его образуют крупные наружные и внутренние клетки-столбы. Со стереоцилиями волосковых клеток соприкасается текториальная (покровная) мембрана [из Kessel RJ, Kardon RH, 1979]
4. Путь передачи слухового раздражения. Цепочка передачи звукового давления выглядит следующим образом: барабанная перепонка \rightarrow молоточек \rightarrow наковальня \rightarrow стремя \rightarrow мембрана овального окна \rightarrow перилимфа \rightarrow базилярная и текториальная мембраны \rightarrow мембрана круглого окна (рис. 8-55). При смещении стремени частицы перилимфы перемещаются по вестибулярной лестнице и затем через геликотрему по барабанной лестнице к круглому окну. Жидкость, сдвинутая смещением мембраны овального окна, создаёт избыточное давление в вестибулярном канале. Под действием этого давления базальный участок осно́вной мембраны смещается в сторону барабанной лестницы. Колебательная реакция в виде волны распространяется от базальной части осно́вной мембраны к геликотреме. Смещение текториальной мембраны относительно волосковых клеток при действии звука вызывает их возбуждение. Возникающая электрическая реакция, названная микрофонным эффектом, по своей форме повторяет форму звукового сигнала.
5. Эндокохлеарный потенциал. Перепончатый канал улитки заряжен положительно ($60-80 \mathrm{mB}$) относительно двух других лестниц. Источник этого (эндокохлеарного) потенциала - сосудистая полоска. Волосковые клетки поляризованы эндокохлеарным потенциалом до критического уровня. В условиях поляризации волосковых клеток эндокохлеарным потенциалом резко повышается их чувствительность к механическому воздействию.
В. Орган равновесия (рис. 8-55, 8-56). Вестибулярный аппарат расположен в каменистой части височной кости, состоит из костного и перепончатого лабиринтов. Костный лабиринт - система полукружных каналов (canales semicirculares) и сообщающаяся с ними

Рис. 8-54. Связь наружной волосковой и наружной фаланговой клеток. Разновидность многочисленных поддерживающих клеток кортиева органа - наружные фаланговые клетки Де́йтерса. Такая клетка полностью окружает основание наружной волосковой клетки вместе с эфферентным нервным окончанием, имеющим форму чаши. Дополнительно наружная фаланговая клетка образует тонкий длинный отросток, конец которого прикрепляется к боковой поверхности апикальной части наружной волосковой клетки [из Bloom W, Fawcett DW, 1968]

полость - преддверие (vestibulum). Перепончатый лабиринт - система тонкостенных соединительнотканных трубок и мешочков, расположенная внутри костного лабиринта. В костных ампулах перепончатые каналы расширяются. В каждом ампулярном расширении полукружного канала находятся кристы, или гребешки (crista ampullaris). В преддверии перепончатый лабиринт образует два сообщающихся между собой мешочка: утрикулюс, в который открываются перепончатые полукружные каналы, и саккулюс. Чувствительные области в мешочках называются пятнами. Перепончатые полукружные каналы и мешочки преддверия заполнены эндолимфой и сообщаются с улиткой, а также с расположенным в полости черепа эндолимфатическим мешком.

1. Эпителий пятен и крист. В состав эпителия пятен и крист входят чувствительные волосковые и поддерживающие клетки. В эпителии пятен киноцилии распределены особым образом. Здесь волосковые клетки образуют группы из нескольких сот единиц. Внутри каждой группы киноцилии ориентированы одинаково, однако ориентация самих групп различна. Эпителий пятен покрыт студенистой отолитовой мембраной.

Рис. 8-55. Преддверно-улитковый орган (organum vestibulocochleare). Звуковое давление через барабанную перепонку по цепочке косточек среднего уха (молоточек \rightarrow наковальня \rightarrow стремя) передаётся на мембрану овального окна и далее к перилимфе сообщающихся через геликотрему вестибулярной и барабанной лестниц к круглому окну. Колебания перилимфы передаются текториальной мембране. Её смещение вызывает раздражение волосковых клеток [из Best CH, Taylor NB, 1966]

Рис. 8-56. Нейросенсорные области внутреннего уха выделены чёрным. В нейросенсорных областях расположены механочувствительные волосковые клетки. Это кортиев орган (орган слуха), кристы и пятна, или макулы (орган равновесия) [по Ebner I, из Bloom W, Fawcett $D W$, 1975]

Отолиты - кристаллы карбоната кальция. Эпителий крист окружён желатинообразным прозрачным куполом.

Волосковые клетки (рис. 8-57) присутствуют в каждой ампуле полукружных каналов и в пятнах мешочков преддверия. Различают два типа волосковых клеток. Клетки I типа обычно расположены в центре гребешков, тогда как клетки II типа - по периферии. Клетки обоих типов в апикальной части содержат 40-110 неподвижных волосков (стереоцилии) и одну ресничку (киноцилия), расположенную на периферии пучка стереоцилий. Самые длинные стереоцилии находятся вблизи киноцилии, а длина остальных уменьшается по мере удаления от киноцилии. Волосковые клетки чувствительны к направлению действия стимула (дирекционная чувствительность). При направлении раздражающего воздействия от стереоцилий к киноцилии волосковая клетка возбуждается. При противоположном направлении стимула происходит угнетение ответа.
(1) Клетки I типа имеют форму амфоры с закруглённым дном и размещены в бокалообразной полости афферентного нервного окончания. Эфферентные волокна образуют синаптические окончания на афферентных волокнах, связанных с клетками I типа.
(2) Клетки II типа имеют вид цилиндров с округлым основанием. Характерная особенность этих клеток заключается в их иннервации: нервные окончания здесь могут быть как афферентными (большинство), так и эфферентными.
2. Вестибулярный нерв образован отростками биполярных нейронов в составе вестибулярного ганглия. Периферические отростки этих нейронов подходят к волосковым клеткам каждого полукружного канала, утрикулюса и саккулюса, а центральные направляются в вестибулярные ядра продолговатого мозга.

Афферентные нервные окончания

Эфферентное нервное окончание
3. Патология. При сверхпороговом звуковом раздражении (акустическая травма) и применении некоторых ототоксических препаратов (антибиотики стрептомицин, гентамицин) волосковые клетки погибают. Вопрос об их регенерации имеет важное практическое значение. Сравнительно недавно получено экспериментальное подтверждение возможности регенерации волосковых клеток внутреннего уха млекопитающих. Предшественники регенерирующих волосковых клеток - недифференцированные клетки нейросенсорного эпителия, расположенные среди поддерживающих клеток.

ПРЕПАРАТЫ

А. Передний сегмент глаза (рис. 8-58). Рассматривая препарат невооруженным глазом, видим купол, образуемый роговицей, позади которой находится передняя камера глаза. Кзади в области перехода роговицы в склеру располагается цилиарное тело. От него к зрачку идёт радужная оболочка. Центральную часть препарата занимает хрусталик. Легко различимы: роговица (многослойный плоский эпителий, передняя пограничная мембрана, собственное вещество, задняя пограничная мембрана и эндотелий), склера, сосудистая оболочка (надсосудистая, сосудистая, хориокапиллярная и базальная пластинки), цилиарное тело (в нём - цилиарная мышца, цилиарные отростки), радужная оболочка (передний эпителий, наружный пограничный слой, сосудистый слой, внутренний пограничный слой, пигментный слой), хрусталик, циннова связка, зубчатая линия.
Б. Сетчатка (рис. 8-59). На срезе видны все три оболочки глазного яблока (сетчатка, сосудистая оболочка, склера). Самьй наружный слой сетчатки - слой пигментного эпителия. Апикальная часть клеток имеет цитоплазматические отростки - борода пигментного эпителия. Эти отростки во втором слое сетчатки окружают колбочки и палочки. Таким образом, колбочки и палочки располагаются во 2 -м слое сетчатки. 3 -й слой слабо заметен. Это наружная пограничная мембрана, образованная наружными концами мюллеровских клеток. 4 -й слой - наружный ядерный. На препарате в нём отчётливо видны ядра свето-

Рис. 8-58. Передний отдел глаза [из Bargmann W, 1977]
Слой
нервных
волокон

Рис. 8-59. Слои сетчатки [из Bloom W, Fawcett DW, 1968]

чувствительных клеток - палочек и колбочек. 5 -й слой — наружный сетчатый, образован переплетением тонких волокон. Здесь осуществляются контакты внутренних сегментов палочек и колбочек с дендритами биполярных клеток. 6-й слой - внутренний ядерный резко выделяется за счёт многочисленных ядер, принадлежащих в основном биполярным клеткам, но также горизонтальным и амакринным клеткам. 7 -й слой - внутренний сетчатый, он образован контактирующими отростками аксонов биполярных и дендритами ганглиозных нейронов. 8-й слой - ганглиозный. Здесь в один ряд располагаются крупные мультиполярные клетки с большими ядрами. 9-й слой - нервных волокон, образован аксонами ганглиозных нейронов, направляющихся к заднему полюсу глаза и там формирующих зрительный нерв. 10 -й слой - внутренняя пограничная мембрана - отграничивает сетчатку от стекловидного тела.

Рис. 8-60. Гребешок (crista ampullaris). Нейросенсорный эпителий образован волосковыми и поддерживающими клетками. В центре гребешка расположены волосковые клетки I типа, а по периферии II типа. Волосковые клетки образуют синапсы с нервными окончаниями. В куполе гребешка отолиты отсутствуют [из Junqueira LC et al, 1977]
B. Opraн равновесия (рис. 8-60). Срез через слуховой гребешок ампулы (crista ampullaris). Соединительнотканная основа гребешка выстлана с поверхности волосковыми чувствительными и поддерживающими клетками. Апикальная часть волосковых клеток окружена желатинообразным прозрачным куполом (cupula). Стенка перепончатого канала выстлана однослойным плоским эпителием.
Г. Улитка (рис. 8-61). На препарате видны следующие элементы: костный лабиринт, вестибулярная лестница, барабанная лестница, вестибулярная мембрана, спиральная костная пластинка, лимб костной спиральной пластинки с преддверной и барабанной губами, спиральная связка, сосудистая полоска, спиральный орган, спиральный ганглий улитки. В спиральном органе различают: наружные клетки-столбы и внутренние клетки-столбы, ограничивающие туннель; наружные и внутренние волосковые клетки, а также поддерживающие клетки.

Рис. 8-61. Перепончатый канал и спиральный (кортиев) орган. Канал улитки разделён на барабанную и вестибулярную лестницы и перепончатый канал, в котором расположен кортиев орган. Перепончатый канал отделён ст барабанной лестницы базилярной мембраной. В её составе проходят периферические отростки нейронов спирального ганглия, образующие синаптические контакты с наружными и внутренними волосковыми клетками [из Bloom W, Fawcett DW, 1975]

^ИTEPATYPA

Дуус П Топический диагноз в неврологии. Анатомия. Физиология. Клиника. М.: ИПЦ «ВАЗАР-ФЕРРО», 1995
Кимельберг ГК, Норенберг МД Астроциты. В мире науки, 1989, №6, 32-41
Селко ДД Амилоидный белок и болезнь Альцгеймера. В мире науки, 1992, №1, 28-36
Black MM, Baas PW The basis of polarity in neurons. Trends Neurosci., 1989, No12, 211-214
Carpenter M.B. Core text of neuroanatomy. 4th edition. Baltimore: Williams a. Wilkins, 1991
Kreutzberg GW 100 years of Nissl staining Trends Neurosci, 1984, №7, 236-237
Lamb TD Transduction in vertebrate photoreceptors Trends Neurosci, 1986, No9, 224-228
Masland RH Amacrine cells Trends Neurosc, 1988, No11, 405-410
Neuman EA Regulation of potassium levels by glial cells in the retina. Trends Neurosci., 1985, N68, 156-159
Perry VH, Gordon S Macrophages and microglia in the nervous system. Trends Neurosci., 1988, 11, 273-277
Sternini C Structural and chemical organization of the myenteric plexus. Ann. Rev. Physiol., 1988, 50: 81-93
Swanson GJ Regeneration of sensory hair cells in the vertebrate inner ear. Trends Neurosci., 1988, No11, 339-342

ВОПРОСЫ

Пояснение. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждения, наиболее соответствующее каждому случаю.

1. Из нейроэктодермы развиваются все структуры, КРОМЕ:
(A) нервной трубки
(Б) нервного гребня
(B) обонятельной плакоды
(Г) хрусталика
(Д) цилиарных мышц
2. Центральная ямка сетчатки. Верно всё, КРОМЕ:
(А) здесь резко истончены внутренний ядерный и ганглиозный слои
(Б) место наилучшего восприятия зрительных раздражений
(B) это область формирования и выхода зрительного нерва
(Г) место радиального расхождения аксонов фоторецепторных клеток
(Д) содержит пренмущественно колбочки
3. Какова функция иле́ммова канала?
(A) Отток слёзной жидкости
(Б) Обильная васкуляризация оболочек
(B) Обновление состава стекловидного тела
(Г) Отток жидкости из передней камеры
(Д) Питание переднего отдела сетчатки
4. Цепь передачн электрического возбуждения в сетчатке:
(A) пигментная клетка - биполярный нейрон - фоторецептор
(Б) фоторецептор - биполярный нейрон - ганглиозная клетка
(B) ганглиозная клетка - биполярный нейрон - фоторецептор
(Г) фоторецептор - ганглиозная клетка - биполярный нейрон
(Д) пигментная клетка - фоторецептор - ганглиозная клетка - биполярный нейрон

5. Колбочки. Верно всё, КРОМЕ:

(A) рецепторы цветового зрения
(Б) развиваются из глазного пузыря нервной трубки
(B) содержат зрительные пигменты разных типов
(Г) аксон абразует синаптический контакт с ганглиозной клеткой
(Д) фотоны активируют зрительный пигмент в наружных сегментах

6. Какая часть фоторецептора регистрирует фотоны?

(A) Наружный сегмент
(Б) Связуюший отдел
(B) Внутренний сегмент
(Г) Перикарион
(I) Аксон

7. Источник развития канала улитки:

(A) мезенхима
(Б) эктодерма плакод
(B) нейроэктодерма для слухового ганглия
(Г) энтодерма вентральной стенки глотки
(Д) мезодерма головного отдела

8. Слуховое пятно (макула) содержит все структуры, КРОМЕ:

(A) стереоцилий
(Б) отолитовой мембраны
(B) покровной мембраны
(Г) кристаллов карбоната кальция
(Д) киноцилнй
9. Волосковые клетки органа равновесия. Верно всё, КРОМЕ:
(A) содержат киноцилию и несколько десятков стереоцилий
(Б) стереоцилии имеют 1 пару центральных и 9 пар периферических микротрубочек
(B) чувствительны к направлению действия стимула
(Г) образуют синаптические контакты с эфферентными нервными волокнами
(Д) расположены в эпителии пятен мешочков и гребешков

Пояснение. Каждый из нижеприведённых и пронумерованных вопросов 10-22 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:
А - если правильны ответы 1, 2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны ответы 1, 2, 3 и 4
10. Роговица глаза:
(1) покрыта многослойным эпителием
(2) задняя поверхность выстлана эндотелием
(3) фибробласты стромы происходят из нервного гребня
(4) собственное вещество содержит пластинчатые нервные окончания и капилляры
11. Структуры наружных сегментов фоторецепторных нейронов:
(1) 9 пар микротрубочек
(2) митохондрии
(3) мембранные диски
(4) базальное тельце
12. Палочки сетчатки:
(1) зрительный пигмент родопсин расположен в плазмолемме наружных сегментов
(2) в темноте ионные каналы в плазмолемме открыты
(3) активация G -белка вызывает появление темнового тока в плазмолемме
(4) снижение концентрации цГМФ приводит к закрытию Na^{+}-каналов
13. Мюллеровские клетки:
(1) лерекачивают K^{+}из наружных отделов сетчатки в жидкость стекловидного тела
(2) контролируют восприятие подвижных объектов
(3) глиальные клетки, контролирующие в сетчатке ионный гомеостаз
(4) нейроны, перикарионы которых расположены в пределах внутреннего ядерного слоя
14. Укажите клетки, способные к регенерации в постнатальном онтогенезе:
(1) нейроны речевого центра
(2) нейроны обонятельной выстилки
(3) пирамидные нейроны V слоя коры большого мозга
(4) шванновские клетки

15. Рецепторная клетка обонятельной выстилки:

(1) центральный отросток через отверстие в решётчатой кости проникает в полость черепа
(2) центральный отросток образует безмиелиновое волокно обонятельного нерва
(3) периферический отросток направляется к поверхности эпителия
(4) постоянно обновляется за счёт клеток-предшественниц
16. Обонятельные волоски:
(1) типичные реснички
(2) отходят от базальных телец в обонятельной булаве
(3) участвуют в процессе хемовосприятия
(4) погружены в слизь
17. В процессе хемовосприятия в органе обоняния участвуют:
(1) белки-рецепторы з плазмолемме обонятельной рецепторной клетки
(2) G-белок
(3) вторые посредники: цАМФ и инозитолтрифосфат
(4) Ca^{2+}-каналы в плазмолемме рецепторной клетки
18. Структуры, содержащие вкусовые почки:
(1) язык
(2) губа
(3) пищевод
(4) глотка
19. Хемочувствительные сосочки языка:
(1) грибовидные
(2) желобоватые
(3) листовидные
(4) нитевидные

20. Вкусовая почка:

(1) расположена в толще эпителиального пласта
(2) серотонин - нейромедиатор в синапсах между рецепторными клетками и афферентнымм волокнами
(3) рецепторные белки, взаимодействующие с вкусовыми раздражителями, встроены в мембрану микроворсинок
(4) клетки относятся к обновляющейся популяции

21. Рецепторные клетки органа вкуса:

(1) сладкие раздражители увеличивают уровень цАМФ
(2) в восприятии горьких веществ участвует инозитолтрифосфат
(3) тормозное влияние симпатических нервных волокон осуществляется через β-адренорецепторы
(4) облегчающее влияние парасимпатических нервных волокон осуществляется через холинорецепторы
22. Рецепторные клетки гравитационной и вибрационной чувствительности расположены:
(1) в перепончатом канале улитки
(2) в ампулярных расширениях полукружных каналов перепончатого лабиринта
(3) на медиальной стенке барабанной полости
(4) в пятнах мешочков

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - Г

Нервная трубка, нервный гребень и нейрогенные плакоды, в т.ч. и обонятельная, развиваются из дорсальной эктодермы, или нейроэктодермы. Цилиарные мышцы, как и ряд других структур глаза (элементы роговицы, склеры и т.д.), происходят из нервного гребня, следовательно, также имеют нейроэктодермальное происхождение. Хрусталик развивается из эктодермы.

2. Правильный ответ - В

На заднем полюсе глаза в области оптической оси сетчатка становится тоньше. Здесь различают жёлтое пятно диаметром $1,5-2$ мм. Центральная ямка - углубление в средней части жёлтого пятна, место наилучшего восприятия, содержит преимущественно колбочки с радиально расходящимися аксонами. Каждая колбочка центральной ямки образует синапсы только с одним биполярным нейроном. Внутренний ядерный и ганглиозный слои в области центральной ямки резко истончены. Зрительный нерв выходит из сетчатки медиальнее жёлтого пятна, где расположен диск зрительного нерва (слепое пятно). В центре диска имеется углубление, в котором видны питающие сетчатку сосуды.

3. Правнльный ответ - Г

Шле́ммов канал - совокупность небольших сообшающихся полостей в области соединения склеры с роговицей, обеспечивает отток жидкости из передней камеры глаза в венозную систему. От цилиарного тела по направлению к хрусталику отходят цилиарные отростки. Их сердцевина состоит из соединительной ткани с многочисленными капиллярами с фенестрированным эндотелием. Отростки покрыты двумя слоями эпителиальных клеток. Непигментный внутренний слой участвует в транспорте веществ, воды и ионов из плазмы в заднюю камеру и образовании водянистой влаги, поступающей в переднюю камеру через отверстие зрачка. Наружный слой представлен пигментным эпителием. Он расположен на базальной мембране, которая с возрастом утолщается. Питание сетчатки обеспечивают её кровеносные сосуды, центральные артерия и вена, сопровождаюцие зрительный нерв. Рисунок ветвления кровеносных сосудов сетчатки строго индивидуален, что используют в электронно-оптических системах современных замков для идентификации личности на охраняемых объектах. Сосуды разветвляются на уровне биполярного и ганглиозного слоёв и не достигают внутреннего ядерного слоя. Кровеносные капилляры сетчатки с нефенестрированным эндотелием окружены отростками глиальных (мюлеровских) клеток. Слёзная железа относится к вспомогательному аппарату глаза. Это сложная тру6чато-альвеолярная железа. Её секреторные отделы окружены миоэпителиальными клетками. Секрет железы, слёзная жидкость, по 6-12 протокам поступает в свод конъюнктивы и омывает роговицу и конъюнктиву. Из слёзного мешка по носослёзному каналу слёзная жидкость попадает в нижний носовой ход.

4. Правильный ответ - Б

Цепь передачи возбуждения в сетчатке: фоторецептор - биполярный нейрон - ганглиозная клетка. Биполярные нейроны: одни клетки получают информацию преимущественно от палочек, другие - от колбочек. Горизонтальные клетки, расположенные в наружной части внутреннего ядерного слоя, получают информацию от колбочек и передают её также колбочкам. Перикарионы амакринных клеток находятся во внутренней части внутреннего ядерного слоя в области синапсов между биполярными и ганглиозными клетками. Аксоны ганглиозных клеток образуют зрительный нерв.

5. Правильный ответ - Г

Колбочки - рецепторы цветового зрения, содержат зрительные пигменты, определяющие избирательную чувствительность клеток к красному, зелёному и синему цветам. Возможность различать любые цвета определяется присутствием в сетчатке всех трёх зрительных пигментов (для красного, зелёного и синего - первичные цвета). Существует три типа колбочек, каждый из которых содержит только один из трёх разных (красный, зелёный и синий) зрительных пигментов. Аксоны всех фоторецепторных клеток образуют синаптические контакты с биполярными нейронами. Как и

остальные нейроны сетчатки, колбочки развиваются из клеток-предшественниц глазных пузырей, При попадании квантов света на наружные сегменты в фоторецепторах происходит фотоактивация зрительного пигмента.

6. Правильный ответ - А

Периферический отросток фоторецепторных клеток состоит из наружного и внутреннего сегментов, соединённых ресничкой. Внутренний сегмент содержит митохондрии и базальное тельце, от которого в наружный сегмент отходит 9 пар микротрубочек. В наружном сегменте расположена стопка дисков, содержащих зрительный пигмент. Мембрана дисков и клеточная мембрана разобщены. Кванты света активируют пигмент в дисках, что закрывает Na^{+}-каналы в клеточной мембране и снижает вход Na^{+}в клетку.

7. Правильный ответ - Б

Источник развития органа слуха и равновесия - парные утолщения эктодермы на уровне ромбовидного мозга (слуховые плакоды). Они появляются у 22 -дневного эмбриона. Путём инвагинации и последующего отделения от эктодермы формируется слуховой пузырёк. Зачаток слухового ганглия прилежит к слуховому пузырьку с медиальной стороны. По мере развития слуховой ганглий разделяется на ганглий преддверия и ганглий улитки. В слуховом пузырьке появляются две части: эллиптический мешочек - утрикулюс (utriculus) с полукружными каналами и сферический мешочек - саккулюс (sacculus) с зачатком канала улитки. Полость среднего уха и евста́хиева труба развиваются из материала первой пары глоточных карманов. Из нейрогенных эктодермальных плакод пронсходит часть нейронов ганглия тройничного нерва (ganglion trigeminale) и ганглия коленца (ganglion geniculi) промежуточного нерва. Из этого источника развиваются все нейроны VIII (спиральный ганглий, ganglion spirale cochleae), IX (каменистый ганглий, ganglion petrosum), X (узловатый ганглий, ganglion nodosum) ганглиев черепных нервов. Энтодерма вентральной стенки глотки (глоточных карманов) участвует в закладке языка и щитовидной железы. Мышцы языка происходят из миотомов краниальных сомитов. Производные мезенхимы головы развиваются из нескольких зачатков. Мезенхима сомитов и латеральной пластинки головного отдела формирует произвольные мышцы черепно-лицевой области, собственно кожу и соединительную ткань дорсальной области головы. Мезенхима нервного гребня образует структуры лица и глотки: хрящи, кости, сухожилия, собственно кожу, дентин, соединительнотканную строму желёз.

8. Правильный ответ - В

Механорецепторные волосковые клетки слухового пятна имеют неподвижные реснички (стереоцилии) и подвижные реснички (киноцилии). Эпителий пятна покрыт студенистой отолитовой мембраной, содержащей кристаллы карбоната кальция (отолиты). Покровная мембрана проходит по всей длине кортиева органа и состоит из тонких коллагеновых волокон, погружённых в склеивающее вещество. Свободным концом мембрана покрывает стереоцилии волосковых клеток. Другой конец мембраны прикреплён к спиральному лимбу.

9. Правильнын̆ ответ - Б

Волосковые клетки органа равновесия расположены в эпителии пятен мешочков и гребешков, они чувствительны к направлению стимула и образуют синаптические контакты с афферентными и эфферентными нервными волокнами. Неподвижные стереоцилии присутствуют в апикальной части волосковых клеток органов слуха и равновесия. Они не содержат микротрубочек. В органе равновесия волосковые клетки I и II типов содержат 40-110 неподвижных волосков (стереоцилии) и одну ресничку (киноцилия), расположенную на периферии пучка стереоцилий. Самые длинные стереоцилии находятся вблизи киноцилии, а длина остальных уменьшается по мере удаления от киноцилии.

10. Правильный ответ - A

Роговица глаза покрыта многослойным эпителием, задняя поверхность выстлана эндотелием. Собственное вещество - слой толщиной 500 мкм, образующий основную массу роговицы, включает упорядоченно расположенные пластинки из коллагеновых фибрилл стандартного диаметра, кото-

рые окружены матриксом с высоким содержанием кислых гликозаминогликанов и хондроитинсульфата. Собственное вещество не имеет сосудов и нервных окончаний, содержит редкие уплощённые фибробласты, происходящие из нервного гребня.

11. Правильный ответ - Б

Наружные сегменты фоторецепторных нейронов заполнены столкой мембранных дисков, содержащих зрительный пигмент; имеют 9 пар микротрубочек, связанных с базальным тельцем внутреннего сегмента. Митохондрии заполняют внутренний сеегмент.

12. Правильный ответ - B

Родопсин локализуется в мембране дисков наружного сегмента фоторецепторных клеток. Молекула содержит 7 трансмембранных α-спиральных участков. Мутации гена опсина - причина врождённой ночной слепоты. В темноте ионные каналы в плазмолемме открыты за счёт связывания белков ионных каналов с цГМФ. Потоки внутрь клетки Na^{+}и Ca^{2+} через открытые каналы обеспечивают темновой ток. Активация родопсином G-белка вызывает увеличение активности цГМФфосфодиэстеразы, гидролиз цГМФ цГМФ-фосфодиэстеразой, снижение концентрации цГМФ и переход цГМФ-зависимых Na^{+}-каналов из открытого состояния в закрытое.

13. Правильный ответ - Б

Мюллеровские клетки - разновидность глиальных клеток сетчатки, регулирующих ионный гомеостаз. Это крупные клетки радиальной глии, проходящие через все слои сетчатки. Они перекачивают K^{+}из наружных отделов сетчатки в жидкость стекловидного тела. Восприятие подвижных объектов - функция палочек. Внутренний ядерный слой включает преимущественно перикарионы биполярных нейронов. Здесь также присутствуют перикарионы горизонтальных и амакринных клеток.

14. Правильный ответ - В

К клеточным типам, способным к регенерации за счёт пролиферации и дифференцировки из кле-ток-предшественниц, следует отнести нейроны обонятельной выстилки и шванновские клетки. Регенерируют также волосковые клетки нейросенсорного элителия органов слуха и равновесия.

15. Правильный ответ - Д

Центральные отростки рецепторных клеток обонятельной выстилки входят в состав безмиелиновых волокон обонятельного нерва и через отверстия в решётчатой кости проникают в полость черепа. Периферические отростки направляются к поверхности эпителия и участвуют в процессе хемовосприятия. Рецепторные клетки обонятельной выстилки постоянно обновляются за счёт кле-ток-предшественниц.

16. Правильный ответ - Д

Сравнительно короткий периферический отросток рецепторной клетки обонятельной выстилки образует на конце утолщение - обонятельную булаву диаметром 1-2 мкм. От базальных телец обонятельной булавы отходят обонятельные волоски длиной до 10 мкм, имеющие строение типичных ресничек. Погружённые в слизь обонятельные волоски участвуют в процессе хемовосприятия: в плазмолемму обонятельных волосков встроены хеморецепторные молекулы, специфически связывающиеся с молекулами пахучих веществ.

17. Правильный ответ - Д

Пахучее вещество взаимодействует с белком-рецептором в плазмолемме обонятельных ресничек, активируя G-белок, что приводит к повышению активности аденилатциклазы и уровня цАМФ. При действии некоторых пахучих веществ быстро возрастает уровень инозитолтрифосфата. Вторые посредники - цАМФ и инозитолтрифосфат - регулируют состояние Ca^{2+}-каналов в плазмолемме рецепторной клетки. Через каналы внутрь клетки поступают ионы Ca^{2+}.

18. Правильный ответ - Д

Типичная локализация вкусовых почек - эпителий хемочувствительных сосочков языка. Вкусовые почки присутствуют в многослойном плоском эпителии слизистой оболочки пищевода и глотки. У детей и, реже, у взрослых вкусовые почки встречаются в эпителии губ, надгортанника и даже голосовых связок.

19. Правильный ответ - A

Грибовидные, желобоватые и листовидные сосочки относят к хемочувствительным, т.к. именно они содержат вкусовые почки. Желобоватые сосочки в количестве 6-12 расположены между телом и корнем языка, образуя открытый кпереди угол. Они возвышаются над поверхностью языка. Каждый желобоватый сосочек окружён желобком, отделяющим его от окружающего валика. В эпителии боковой поверхности сосочка и валика расположены вкусовые почки. Листовидные сосочки находятся на боковой поверхности языка и хорошо развиты у детей. С каждой стороны языка имеется до 8 листовидных сосочков, разделённых узкими углублениями. Вкусовые почки расположены, как и в желобоватых сосочках, в составе эпителия боковой поверхности сосочков. На кончике языка и по его краям локализованы грибовидные сосочки, имеющие сравнительно узкое основание, широкую и уплощённую верхнюю часть с 3-4 вкусовыми почками. Самые многочисленные сосочки - нитевидные, они равномерно покрывают поверхность спинки языка и покрыты частично ороговевающим эпителием.

20. Правильный ответ - Д

Вкусовая почка расположена в толще эпителиального пласта. Её клетки относятся к обновляющейся популяции. Серотонин - нейромедиатор в синапсах между рецепторными клетками и афферентными волокнами. Рецепторные белки, взаимодействующие со вкусовыми раздражителями, встроены в мембрану микроворсинок вкусовых рецепторных клеток.

21. Правильный ответ - Д

Сладкие раздражители увеличивают уровень цАМФ в рецепторных клетках органа вкуса; в восприятии горьких веществ участвует система инозитолтрифосфата. Тормозное влияние симпатических нервных волокон осуществляется через β-адренорецепторы, а облегчающее влияние парасимпатических нервных волокон осущеётвляется через холинорецепторы.

22. Правильный ответ - В

Рецепторные клетки гравитационной и вибрационной чувствительности расположены в гребешках ампулярных расширений полукружных каналов перепончатого лабиринта и в пятнах мешочков. В перепончатом канале улитки на базилярной мембране расположен рецепторный аппарат улитки ко́ртиев (спиральный) орган. Барабанная полость (cavum tympani) - воздухоносное пространство среднего уха в пирамиде височной кости.

9

Энgокринная система

I. ОСНОВНЫЕ ПОНЯТИЯ

А. Межклеточные взаимодействия информационного характера (концепция сигнал \rightarrow ответ) рассмотрены в главе 2 I B 2. Функции эндокринной системы как раз и заключаются в реализации межклеточных взаимодействий информационного характера, осуществляемых при помощи сигнальных молекул - гормонов, вырабатываемых эндокринными клетками и циркулирующих во внутренней среде организма.
Б. Эндокринная клетка. Термин эндккриная клетка применяют по отношению к клеткам, синтезирующим и секретирующим во внутреннюю среду организма тот или иной гормон.
На практике термин эндокринная клетка применяют по отношению к секреторным клеткам желёз с внутренней секрецией, одиночным эндокринным клеткам и их небольшим скоплениям (например, нейроэндокринные клетки в системе органов дыхания), часто объединяемым в диффузные эндокринные системы (например, энтеральная эндокринная система - совокупность всех клеток ЖКТ, продуцирующих биологически активные вещества регуляторного характера).
В. Гормон. Термин гормон применяют по отношению к любому биологически активному веществу, циркулирующему во внутренней среде организма и оказывающему регуляторный эффект на свои клетки-мишени. Помимо гормонов, вырабатываемых эндокринными клетками, термин подразумевает факторы роста, нейропептиды, гормоны иммунной системы и вообще все биологически активные соединения, секретируемые во внутреннюю среду, регистрируемые клетками-мишенями и вызывающие изменения режима функционирования клеток-мишеней.

1. Тропный гормон - гормон, клетками-мишенями которого являются другие эндокринные клетки (например, часть эндокринных клеток передней доли гипофиза синтезирует и секретирует в кровь АКТГ (ддренокортикопропный гормон). Мишени АКТГ - эндокринные клетки пучковой зоны коры надпочечников, синтезирующие глюкокортикоиды.
2. Рилизинг гормоны (рилизинг факторы) [om англ. releasing hormone (releasing factor)] группа синтезируемых в нейронах гипоталамической области мозга гормонов, мишенями которых являются эндокринные клетки передней доли гипофиза (например, рилизинг гормон для синтезирующих АКТГ клеток передней доли гипофиза - кортиколиберин). a. Либерин - рилизинг гормон, способствующий усилению синтеза и секреции соответствующего гормона в эндокринных клетках передней доли гипофиза (например, кортиколиберин активирует секрецию АКТГ из АКТГ-синтезирующих эндокринных клеток передней доли гипофиза).
б. Статин - рилизинг гормон, в отличие от либеринов ингибирующий синтез и секрецию гормонов в клетках-мишенях.
Г. Клетка-мишень - клетка, способная регистрировать при помощи специфических рецепторов наличие гормона и отвечать изменением режима функционирования при связывании этого гормона (лиганд) с его рецептором.
Д. Лиганд. Под этим термином понимают хнмическое соединение, связывающееся с другим химическим соединением, как правило, с бо́льшей молекулярной массой. В эндокринологическом контексте термин лиганд применяют по отношению к молекулам гормонов, связывающихся со специфичными для них рецепторами клеток-мишеней.
E. Рецептор. Высокомолекулярное вещество, специфически связывающееся с конкретным лигандом, например, гормоном. Выделяют два класса рецепторов - мембранные и ядерные.
3. Мембранные. Рецепторы пептидных лигандов (например, инсулина, гормона роста, разных трофных гормонов), как правило, расположены в плазматической мембране клетки (рис. 9-1, см. такжже главу 2 IB2а(2)(a)).
4. Ядерные. Рецепторы гормонов стероидной природы (например, глюкокортикоидов, тестостерона, эстрогенов), производных тирозина и ретиноевой кислоты имеют внутриклеточную локализацию (рис. 9-2, сж. такжке главу 2 I B 2 а (2) (6)).
5. Вторые посредники. Реализация эффекта гормона в клетке-мишени происходит при помощи внутриклеточного второго гормона (второй посредник; подразумевается, что первый посредник - гормон).
Ж. Второй посредник. Многочисленный класс соединений (см. главу 2 I В 2 а (3)). K ним, например, относятся циклические нуклеотиды (цАМФ, цГМФ), Ca^{2+}, диацилглицерол, инозитолтрифосфат (рис. 9-3) и другие соединения.
6. Внутренняя среда. Под внутренней средой следует понимать не только кровь, но также лимфу, тка́невую жидкость, спинномозговую жидкость, т.е. те среды, куда происходит секреция гормонов. Как правило, гормоны не выделяются во внешнюю среду.

Рис. 9.1. Рецептор инсулина содержит две встроенные в клеточную мембрану $C E$ тирозин киназы. При взаимодействии инсулина с α-СЕ тирозин киназа обеспечивает присоединение фосфата (фосфорилирование) к себе самой, а также к белкам, находящимся в цитоплазме. Фосфорилирование является одним из важнейших внутриклеточных сигнальных механизмов [из Wingard L et al, 1991]

Рис.9-2. Взаимодействие стероидного гормона с клеткой. Транспорт стероидных гормонов во внутренней среде осуществляют специальные белки. Стероидный гормон отделяется от связывающего белка и проходит через клеточную мембрану внутрь клетки, где соединяется с рецептором. Комплекс гормона с рецептором поступает в ядро и взаимодействует со строго определённым фрагментом ДНК с последующей активацией конкретных генов [из Davidson VL, Sittman DB, 1993]

Рис. 9-3. Роль инозитолтрифосфата в реализации эффехта гормона на клетку-мишень. Образование комплекса гормона с рецептором стимулирует G-белок, который активирует фосфолипазу С. Фосфолипаза С катализирует расщепление инозитол-4,5-дифосфата (PIP_{2}) на инозитол-1,4,5-трифосфат (IP_{3}) и диацилглицерол (DAG). IP_{3} вызывает освобождение Ca^{2+} из внутриклеточных депо. $\mathrm{Ca}^{2+}{ }^{2+}$ зависимая протеинкиназа C активируется DAG и фосфорилирует белки клетки [из Alberts B et al, 1989]
И. Цитология эндокринной клетки. Эндокринные клетки имеют строение, определяемое химической природой синтезируемого гормона. Различают следующие типы гормонов: олигопептид (например, нейропептиды), полипептид (например, инсулин), гликопротеин (например, тиреотропин), стероид (например, альдостерон и кортизол), производное тирозина (например, йодсодержащие гормоны щитовидной железы: трийодтиронин $-\mathrm{T}_{3}$ и тироксин $-\mathrm{T}_{4}$),
производные ретиноевой кислоты (например, витамин А), эйкозаноиды, или простаноиды (например, простагландины и простациклины).

1. Пептиды и белки. Для синтезирующих пептиды и белки эндокринных клеток (рис. 9-4) характерно наличие гранулярной эндоплазматической сети (здесь происходит сборка пептидной цепи), комплекса Гольджси (присоединение углеводных остатков, формирование секреторных гранул), секреторных гранул.
2. Стероидные гормоны и производные тирозина. Для клеток, синтезирующих стероидные гормоны, T_{3} и T_{4}, характерно присутствие развитой гладкой эндоплазматической сети и многочисленных митохондрий.
K. Варианты регуляции. Существуют понятия об эндокринном, паракринном и аутокринном вариантах действия биологически активных веществ (рис. 9-5).

Рис. 9-4. Соматотропин-синтезирующая клетка аденогипофиза [из Lentz TL, 1971]

Эндокринная регуляция

Паракринная регуляция
Секреторная клетка Соседняя клетка-мишень

Аутокринная регуляция

- Гормон или другой
- внеклеточный сигнал

Y Рецептор
Рис. 9-5. Варианты воздействия лигандов на клетки-мишени [из Darnell et al, 1986]

1. Эндокринная, или дистантная, когда секреция гормона происходит во внутреннюю среду, клетки-мишени могут отстоять от эндокринной клетки сколь угодно далеко.
2. Паракринная. Продуцент биологически активного вещества и клетка-мишень расположены рядом, молекулы гормона достигают мишени путём диффузии в межклеточном веществе.

Париетальные клетии желёз желудка. Секрецию H^{+}в этих клетках стимулируют гастрин и гистамин, а подавляют соматостатин и простагландины, секретируемые рядом расположенными клетками.
3. Аутокринная. При аутокринной регуляции сама клетка-продуцент гормона имеет рецепторы к этому же гормону (эндокринная клетка является собственной мишенью).

Фактор роста нервов (NGF). Давно известно увеличение содержания NGF при аутоиммунных болезнях (например, при ревматоидном артрите). В-лимфоциты (клетки памяти) секретируют NGF и имеют к нему рецепторы, что существенно для поддержания популяции B-клеток. Таким образом, NGF выступает как аутокринный фактор.
Л. Эндокринные клетки и кровеносные капилляры. Эндокринные клетки, как правило, находятся в тесном контакте с кровеносными капиллярами. Эти капилляры в эндокринных железах имеют стандартное строение: фенестрированного типа эндотелий и широкий просвет (см. главу 10 А 3 : (2)).
М. Классификации. Органы эндокринной системы подразделяют на несколько групп (некоторые из классификаций, хотя они и имеют лишь исторический интерес, всё ещё встречаются в литературе).

1. Гипоталамо-гипофизарная система
a. Нейросекреторные нейроны
б. Гипофиз
2. Мозговые придатки
a. Гипофиз
б. Эпифиз
3. Бранхиогенная группа (имеющая происхождение из эпителия глоточных карманов)
a. Щитовидная железа
б. Паращитовидные железы
в. Вилочковая железа
4. Надпочечниково-адреналовая система
a. Кора надпочечников
б. Мозговое вещество надпочечников
в. Параганглии
5. Островки Ла́нгерханса поджелудочной железы
6. APUD-система
H. Распространённость эндокринных клеток в организме весьма значительна, многие продуценты гормонов перечислены ниже (в скобках указано, где именно в тексте книги рассмотрены эти клетки и продуцируемые ими гормоны). Ряд биологически активных веществ информационного характера (например, цитокины, факторы гемопоэза и др.) секретируют клетки, формально не рассматриваемые как эндокринные.
7. Гипофиз (II)
8. Нейросекреторные нейроны гипоталамуса (II)
9. Шишковидная железа, или эпифиз (III)
10. Щитовидная железа (IV)
11. Околощитовидные железы (V)
12. Надпочечник (VI)
13. Яички (глава 15.2 A)
14. Плацента (глава 3 IX B 3)
15. Островки Ланнерханса (глава 12 IV 1)
16. Вилочковая железа (глава 11 II A)
17. Яичник (глава 15.3)
18. Энтеральная (желудочно-кишечная) эндокринная система (глава 12 IV 2)
19. Почка (глава 14 Б 6 в)
20. Кардиомиоциты предсердий (глава 10 Б 26 (3) (в))
21. Клетки Ме́ркеля кожи (глава 8.2 III А 3 б)
22. Эндокринные клетки органов дыхания (глава 13 B 1 а (3))
23. Цитокины
24. Факторы гемопоэза (глава 6.1 IV B 1)
25. Факторы роста (глава 18)

II. ГИПОТАИАМО-ГИПОФИЗАРНАЯ СИСТЕМА

Эпителиального генеза передняя доля гипофиза (синтез тропных гормонов, экспрессия гена проопиомеланокортина), перикарионы нейросекреторных нейронов гипотала́муса (синтез рилизинг-гормонов, аргинин вазопрессина [антидиуретический гормон, АДГ], окситоцина,

нейрофизинов), гипоталамо-гипофизарный тракт (транспорт гормонов по аксонам нейросекреторных нейронов), аксо-вазальные синапсы (секреция аргинин вазопрессина и окситоцина в капилляры задней доли гипофиза, секреция рилизинг-гормонов в капилляры срединного возвышения), портальная система кровотока между срединным возвышением и передней долей гипофиза в совокупности формируют гипоталамо-гипофизарную систему (рис. 9.6).
А. Гипофиз анатомически имеет ножку и тело, систологически подразделяется на адено- и нейрогипофиз.

1. Развитие (рис. 9-7). Гипофиз образуется из двух зачатков - эктодермального и нейрогенного.

Рис. 9.6. Аватомия гипофиза [из Bloom W, Fawcett DW, 1969]

Рис. 9-7. Развитие гипофиза [из $\operatorname{Ham~AW,~1974]~}$
a. Карман Ра́тке. На 4-5-й неделt эктодермальный эпителий крыши ротовой бухты образует карман Ра́тке - вырост, направляющийся к мозгу. Из этого гипофизарного кармана развивается аденогипофиз (передняя, промежуточная и входящая в состав ножки гипофиза туберальная доли).

Краннофарингиома - врождённая доброкачественная дисэмбриональная опухоль, развивающаяся из эпителия гипофизарного кармана Ра́тке. Интракраниальная часть опухоли нередко достигает гигантских размеров. Опухоль содержит кисты и петрификаты.
б. Processus infundibularis. Навстречу карману Ра́тке растёт выпячивание промежуточного мозга, дающее начало нейрогипофизу (задняя доля гипофиза, нейрогипофизарная часть ножки гипофиза и отчасти срединное возвышение).
2. Аденогипофиз (рис. 9-8) состоит из передней и промежуточной долей и туберальной части ножки гипофиза.
a. Передняя доля - эпителиальная эндокринная железа, её клетки синтезируют и секретируют различные гормоны (тропные и продукты экспрессии гена проопиомеланокортина). Синтез и секреция тропных гормонов находятся под контролем гипоталамических рилизинггормонов, поступающих в капилляры передней доли гипофиза (вторичная капиллярная сеть на рисунке 9-9).
(1) Гормоны. Разные эндокринные клетки передней доли синтезируют различные пептидные гормоны.
(a) Тропные гормоны. В передней доле синтезируются СТГ (́оматотрофный гормон, соматотро[ф][п]ин, гормон роста), ТТГ (тиреопролный гормон, тиротрофин), АКТГ (аиренокортикотропный гормон), гонадотропины (лютеинизирующий гормон - ЛГ [лютропин] и фолликулостимулирующий гормон ФСГ [фоллитропин]), пролактин.
(б) Экспрессия гена проопиомеланокортина может привести к синтезу и секреции ряда пептидов (АКТГ, β - и γ-липотропины, α - β - и γ-меланотропины, β-эндорфин, АKTГ-подобный пептид), из которых гормональная функция установлена для АКТТ и меланотропинов; функции остальных пептидов изучены недостаточно.

Глюкокортикоиды подавляют синтез мРНК прогормона с $M_{\mathrm{r}} 31$ кД, содержащего последовательность для АКТГ.
(2) Цитология. Эндокринные клетки передней доли, синтезирующие пептидные гормоны, содержат элементы гранулярной эндоплазматической сети, комплекс Го́льджии, многочисленные митохондрии и секреторные гранулы различного диаметра. Клетки расположены анастомозирующими тяжами и островками между кровеносными капиллярами с фенестрированным эндотелием. В последние выводятся гормоны, из капилляров к клеткам поступают либерины и соматостатин.
(3) Точная идентификация аденоцитов, синтезирующих конкретные гормоны, проводится иммуноцитохимически.
(4) Морфологическая классификация аденоцитов основана на связывании стандартных красителей (хромофильные и хромофобные [плохо окрашивающиеся] клетки).
(a) Хромофильные клетки подразделяют по окрашиванию секреторных гранул на базофильные и оксифильные (ацидофильные) аденоциты. Дальнейшую идентификацию проводят на полутонких срезах и в ЭМ (преимущественно по величине гранул).
(i) Ацидофилы синтезируют, накапливают в гранулах и секретируют соматотрофин и пролактин.
[1] Соматотрофы имеют гранулы диаметром до 400 нм.
[II] Лактотрофы содержат мелкие (около 200 нм) гранулы. При беременности и лактации ве́личина гранул может достигать 600 нм.
[III] Соматомаммотрофы. Продукт экспрессии имеет эффекты как СТГ, так и пролактина.

(ii) Базофилы

[I] Кортикотрофы экспрессируют ген проопиомеланокортина (преимущественно АКТГ), содержат гранулы диаметром около 200 нм.
[II] Тиротрофы синтезируют ТТГ, содержат мелкие (около 150 нм) гранулы.
[III] Гонадотрофы синтезируют ФСГ и лютропин, размеры гранул варьируют от 200 до 400 нм. ФСГ и ЛГ синтезируются в разных подтипах гонадотрофов.
(б) Хромофобные клетки - гетерогенная популяция клеток.
(i) Камбиальный резерв.
(ii) Дегранулировавшие клетки (оксифилы и базофилы разных типов).
(5) Регенерация аденоцитов, как производных эктодермального эпителия, происходит из камбиальных клеток (скорее всего, хромофобные клетки). Гипертрофия эндокринных клеток наблюдается при ряде состояний (например, при беременности синтезирующие пролактин аденоциты не только гипертрофируются, но и увеличиваются в количестве).
(6) Аденомы гипофиза классифицируют по преобладающему в их составе типу эндокринных клеток. Соматотрофные (соматотрофиномы) опухоли вырабатывают гормон роста, кортикотропные опухоли - АКТГ, лактотропные - пролактин.
6. Туберальная доля состоит из тяжей эпителиальных клеток, между ними расположены гипофизарные воро́тные вены ($v v$. portae hypophysis на рисунке 9-9), соединяющие первичную капиллярную сеть (срединное возвышение) и вторичную капиллярную сеть (передняя доля гипоффиза). Эндокринная функция эпителиальных клеток туберальной доли практически отсутствует, редко встречаются базофильные аденоциты.
в. Средняя (промежуточная) доля гилофиза у человека выражена слабо, иногда встречаются клетки с экспрессией гена проопиомеланокортина.
3. Нейрогипофиз включает заднюю долю гипофиза, нейрогипофизарную часть ножки гипофиза и срединное возвышение (это образование, строго говоря, рассматривают как часть гипоталамуса). Гистологически нейрогипофиз состоит из клеток нейроглии, объединяемых термином питуициты, кровеносных сосудов, аксонов гипоталамо-гипофизарного тракта и их окончаний на кровеносных капиллярах (аксо-вазальные синапсы). Собственная эндокринная функция питуицитов неизвестна, они содержат многочисленные промежуточные филаменты, пигментные гранулы и липидные включения.
a. Задняя доля. Гормоны в задней доле не синтезируются, но через стенку кровеносных капилляров в кровь секретируются аргинин вазопрессин, окситоцин и нейрофизины, поступающие по аксонам гипоталамо-гипофизарного тракта.
б. Нейрогипофизарная часть ножки гипофиза содержнт проходящие в заднюю долю аксоны гипоталамо-гипофизарного тракта.
в. Срединное возвышение. Здесь часть аксонов гипоталамо-гипофизарного тракта заканчивается аксо-вазальными синапсами на стенке кровеносных капилляров (первичная капиллярная сеть на рисунке 9-9). Через стенки этих капилляров в кровь происходит секреция рилизинг-гормонов, мишенями которых являются эндокринные клетки передней доли.
4. Аксо-вазальные синапсы образованы терминальными расширениями аксонов нейосекреторных нейронов гипоталамуса, контактирующими со стенкой кровеносных капилляров срединного возвышения и задней доли гипофиза. Аксоны имеют локальные утолщения (тельца Хе́рринга), заполненные пузырьками и гранулами с гормонами.
а. Срединное возвышение. В кровь поступают рилизинг-гормоны.
б. Задняя доля. В кровь поступают антидиуретический гормон (АДГ), окситоцин и нейрофизины.
5. Портальная система кровотока состоит из первичной капиллярной сети срединного возвышения, воро́тных вен туберальной части аденогипофиза и вторичной капиллярной сети передней доли. Ток крови - от срединного возвышения к передней доле. Воротная система обеспечивает поступление к эндокринным клеткам передней доли синтезируемых нейросекреторными нейронами гипоталамуса рилизинг-гормонов.
Б. Нейросекреторные нейроны гипоталамуса - типичные нервные клетки. Синтезируемые в перикарионах этих нейронов рилизинг-гормоны, аргинин вазопрессин, нейрофизины и окситоцин по аксонам этих нейронов в составе мембранных пузырьков транспортируются к аксо-вазальным синапсам (II А 4). Такие гормон-продуцирующие нервные клетки входят в состав многих ядер гипоталамуса, в т.ч. надзрительного (n. supraopticus) и околожелудочкового (n. paraventricularis). Частично аксоны таких нейронов заканчиваются в эпе́ндимной выстилке III желудочка.

1. Регуляция активности. Синтетическая и секреторная активность нейросекреторных нейронов находится под контролем (синаптические связи нейронов, нейромедиаторы, гормоны).
a. Вышележащие отделы мозга, замыкающие многочисленные сигналы извне и из внутренней среды организма.
2. Дофамин через его рецепторы (см. табл. 9-1).
в. Гормоны. Циклический синтез гонадолиберинов находится под контролем гормонов яичника (см. главу 15.3 В 4).
г. Суточный ритм синтеза и секреции гормонов гипоталамуса.
3. Влияние на аденогипофиз (табл. 9-1).
В. Гипоталамо-гипофизарный тракт (рис. 9-8) образован аксонами нейросекреторных нейронов гипоталамуса. Синтезируемые в нейросекреторных нейронах гормоны при помощи аксонного транспорта достигают аксо-вазальных синапсов нейрогипофиза (II A 4).
Г. Кровоснабжение гипофиза (рис. 9-9). Приносящие гипофизарные артерии в медиобазальном гипоталамусе (срединное возвышение) образуют первичную капиллярную сеть. Терминали аксонов нейросекреторных клеток гипоталамуса заканчиваются на этих капиллярах. Кровь из первичной капиллярной сети собирается в портальные вены, идущие по гипофизарной ножке (туберальная часть) в переднюю долю. Здесь портальные вены переходят в капилляры вторичной сети. Обогащённая гормонами передней доли кровь из вторичной капиллярной сети поступает в общую циркуляцию через выносящие вены.
Д. Гипоталамические рилизинг-гормоны. К настоящему времени выделены, изучены и получены методами генной инженерии соматостатин и несколько либеринов (соматолиберин, гонадолиберин, тиролиберин и кортиколиберин), ожидается появление фармакологических препаратов: активирующего гипофизарную аденилатциклазу полипептида, пролактиностатина, меланостатина.

Таблица 9-1. Гипоталамические нейрогормоны и их эффекты на секрецию гормонов

 аденогипофиза (Merck Manual of Diagnosis and Therapy, c.1056)| Гипоталамически备 нейрогормон и его структура | | Гипофизарный гормон | Эффект |
| :---: | :---: | :---: | :---: |
| TPr | mi, 3 AK | TTГ, пролактин | \uparrow |
| Гонадоли6ерин | пп, 10 AK | Гонадотрофы, пролактин? | \uparrow |
| Дофамин | биогенный амин | Гонадотрофы, TTT, пролактин | \downarrow |
| Кортнколиберин | пn, 41 AK | AKTT | \uparrow |
| Соматолиберин | nп, 40-44 AK | CTI | \uparrow |
| Соматостатин | nn, 14 AK | CTI, TTI, AKTI | \downarrow |

Примечания. АК - аминокислота, пп - пептидный, ТРГ — ТТГ-рилизинг гормон

Рис. 9.8. Гипоталамо-гипофизарный тракт |из $\operatorname{Ham} A W$, 1974]

Рис. 9-9. Система кровоснабжения гипофиза [по Netter FH из Junqueira LC, Carneim J, 1991]

1. Соматостатин

a. Ген соматостатина SST (182450, 3q28).
6. Структура (рис. 9-10). Циклический тетрадекапептид $\mathrm{C}_{76} \mathrm{H}_{109} \mathrm{~N}_{88} \mathrm{O}_{19} \mathrm{~S}_{2}$, мол. масса 1637,9.
в. Распространённость. Синтезируется многими нейронами ЦНС, δ-клетками островков Ла́нгерханса поджелудочной железы, эндокринными клетками ЖКТ и ряда других внутренних органов.
г. Функции. Соматостатин - мощный регулятор функций эндокринной и нервной систем, ингибирует синтез и секрецию множества гормонов и секретов.
(1) Передняя доля гипофиза. Соматостатин подавляет синтез и секрецию гормона роста, АКТГ и тиротропина.
(2) Островки Ла́нгерханса. Соматостатин подавляет секрецию инсулина и глюкагона. Соматостатинома. При опухолях, содержащих δ-клетки, развивается выраженная гипогликемия, для снятия которой применяют аналог соматостатина октреотид.
(3) Энтероэндокринная система. Соматостатин ингибирует секрецию гастрина, холецистокинина, секретина.
(4) Почка. Соматостатин подавляет секрецию ренина.
(5) Желудок. Соматостатин ингибирует желудочную секрецию. Это свойство используют при желудочных кровотечениях.
д. Рецепторы. Соматостатин реализует эффекты через связанные с G-белком мембранные высокоаффинные рецепторы. Идентифицировано 5 подтипов рецепторов соматостатина (аббревиатура - SSTR), имеющих выраженную органную специфичность распределения.
(1) Подтип 1 (SSTRI) экспрессируется в тощей кишке и желудке.
(2) SSTR2 характерен для почки и мозжечка.
(3) SSTR3 - мозг и островки Ла́нгерханса.
(4) SSTR4 - развивающийся мозг. ЦНС, лёгкие.
(5) SSTR5 - разные органы.

2. Соматолиберин

a. Характеристика. Соматолиберин - пептид, содержащий 44 аминокислотных остатка, синтезируется нейросекреторными нейронами гипоталамуса, некоторыми опухолями островковых клеток поджелудочной железы (соматолибриномы).

Соматостатин

5-oxoPro-His-Trp-Ser-Tyr-Gly-Leu-Arg-Pro-GlyNH 2

Гонадолиберин

pyroGlu-His-ProNH ${ }_{2}$

Тиролиберин
Рис. 9-10. Некоторые рилизинг-тормоны [по Merck Index, 12 издание, 1996]
б. Функция. Гипоталамический соматолиберин стимулирует секрецию гормона роста в передней доле гипофиза.
(1) Гигантизм врождённый развивается при избыточной стимуляции секретирующих СТГ аденоцитов (например, имеются сообщения о мальчиках ростом 182 см в возрасте 7 лет и 208 см в 12 лет).
(2) Низкорослость. Соматолиберин небезуспешно применяют в педиатрии при отставании в росте тела.
в. Рецептор соматокринина (соматолиберина) относят к семейству связанных с G-белком рецепторов типа секретина.

Мыши little (lit) имеют точечную мутацию гена для соматокрининового рецелтора, их используют как модель дефектных соматотрофов гипофиза.
3. Гонадолиберин (люлиберин) и пролактиностатин
a. Ген $L H R H(152760,8 \mathrm{p} 21-\mathrm{p} 11.2)$ кодирует последовательность из 92 аминокислот для гонадолиберина и пролактиностатина.
б. Структура (рис. 9-10). Люлиберин - декапептид.
в. Мишени гонадолиберина - гонадотрофы, а пролактиностатина - лактотрофы передней доли гипофиза.
г. Функции. Гонадолиберин - ключевой нейрорегулятор репродуктивной функции, стимулирует синтез и секрецию ФСГ и ЛГ в продуцирующих гонадотрофы клетках, а пролактиностатин подавляет секрецию пролактина из лактотрофных клеток передней доли гипофиза.
(1) Ко́дмена синдром (аносмия у мужчин и женщин, мужской гипогонадизм) развивается при недостаточности гонадолиберина.
(2) Аналоги гонадолиберина применяют при лечении рака простаты и молочной железы.
д. Рецепторы люлиберина - трансмембранные гликопротеины, связанные с G-белком.
4. Тиролиберин - трипептид (рис. 9-10), синтезируется многими нейронами ЦНС (в т.ч. нейросекреторными нейронами околожелудочкового ядра).
a. Мишени тиролиберина - тиротрофы и лактотрофы передней доли гипофиза.
(1) Пролактин. Тиролиберин стимулирует секрецию пролактина из лактотрофов.
(2) TTГ. Тиролиберин стимулирует секрецию тиротропина из тиротрофов.
(3) СТГ. В патологических ситуациях тиролиберин стимулирует секрецию гормона роста из соматотрофов.
б. Рецепторы. Связывание тиролиберина с рецепторами активирует синтез инозитолтрифосфата в клетках-мишенях.

5. Кортиколиберин

a. Ген $C R F(122560,8 q 13)$ кодирует 191 -аминокислотный прогормон.
б. Структура. Кортиколиберин - пептид из 41 аминокислотного остатка.
в. Синтез. Кортиколиберин синтезируется в нейросекреторных нейронах околожелудочкового ядра гипоталамуса, плаценте, Т-лимфоцитах.

Влияние глюкокортикоидов

(a) Гипоталамус. Глюкокортикоиды подавляют синтез гипоталамического кортиколиберина.
(б) Плацента. Глококортикоиды стимулируют синтез плацентарного кортиколиберина.
r. Функции кортиколиберина многочисленны.
(1) Передняя доля гипофиза. Стимуляция экспрессии АКТГ и других продуктов экспрессии гена проопиомеланокортина.
(2) Стресс. Кортиколиберин - координатор эндокринных, нейровегетативных и поведенческих ответов в стрессовых ситуациях. Последние всегда затрагивают ось гипоталамус-гипофиз-надпочечкик.
(3) Плацента. Плацентарные часы (см. главу 3 IX E).
(4) Недостаточность кортиколиберина с вторичной адренокортикальной и тиреоидной недостаточностью, гипогликемией - аутосомно-рецессивное заболевание.
д. Рецепторы кортиколиберина относят к семейству связанных с G -белком рецепторов типа секретина.
е. Связывающий кортиколиберин белок содержится в крови и инактивирует этот гормон.
6. Меланостатин - L-пролил- L-лейцилглицинамид, подавляет образование меланотропинов.
7. Активирующий гипофизарную аденилатциклазу полипептид (ген PACAP, $102980,18 \mathrm{pl1}$) выделен из гипоталамуса, обнаружен в ЦНС, ЖКТ, мозговой части надпочечников, яичках. Этот полипептид имеет 80% гомологии с VIP (вазоактивный интестинальный полипептид).
а. Рецепторы. Многие эндокринные клетки экспрессируют трансмембранные рецепторы активирующего гипофизарную аденилатциклазу полипептида. Несколько типов рецепторов посредством G_{s} активирует аденилатциклазу.
(1) Тип I (ген ADCYAP1, 102981, 7p14). Обнаружены в гипоталамусе, стволовой части головного мозга, гипофизе, хромаффинной ткани, поджелудочной железе, яичках.
(2) Тип II (ген VIPR1, 192321, 3р22) полностью соответствует обнаруженному в ЦНС рецептору типа 1 для VIP.
(3) Тип III найден в хромаффинных клетках надпочечников, связывает также VIP.
б. Эффекты. Активирующий гипофизарную аденилатциклазу полипептид стимулирует секрецию гормона роста, АКТГ, инсулина, катехоловых аминов, а также выступает в роли нейромедиатора и модулятора синаптической передачи как в ЦНС, так и на периферии.

E. Тропные гормоны

1. Гормоны роста. К этой группе относят гормон роста и хорионический соматомаммотрофин. Пять генов этих гормонов находится в хромосоме 17 (17q22-q24).
а. Гены
(1) Гормон роста гипофизарный (СТГ, соматотрофин [соматотропин], соматотрофный [соматотропный] гормон, ген $h G H-N, 139250$) нормально экспрессируется только в ацидофильных клетках (соматотрофы) передней доли гипофиза.
(2) Вариант гормона роста (ген $h G H$-И.
(3) Подобный соматотрофину гормон (ген $h C S-L, 139240$).
(4) Хорионический соматомаммотрофин (гены $C S-A$ и $C S-B$), как и гены $h G H$ V и $h C S-L$, экспрессируется только в клетках синцитиотрофобласта (другими словами, гены принадлежат геному плода, на гаплоидный геном приходится 6 копий гена). Этот гормон известен также как плацентарный лактоген.
(5) Пролактин имеет эффекты СТГ.
б. Структура
(1) Нативный гормон роста - полипептидная цепь (191 аминокислотный остаток, $\mathrm{C}_{990} \mathrm{H}_{1529} \mathrm{~N}_{263} \mathrm{O}_{299} \mathrm{~S}_{7}$, мол. масса 22.124).
(2) Рекомбинантный СТГ содержит полную последовательность нативного соматотропина и N -концевой метионин ($\mathrm{C}_{995} \mathrm{H}_{1537} \mathrm{~N}_{263} \mathrm{O}_{301} \mathrm{~S}_{8}$).

Для коррекции дефицита СТГ применяют гормон, выделенный из гипофизов трупов человека. В 1986 г. появился рекомбинантный СТГ, в настоящее время в развитых странах используют только рекомбинантный СТГ (например, генотропин). Поскольку источник рекомбинантного СТГ практически не ограничен, открываются возможности для применения СТГ при низкорослости разного генеза. Например, получены обнадёживающие результаты при лечении девочек с синдромом Те́рнера и детей с идиопатической низкорослостью.
(3) Плацентарный лактоген содержит 190 аминокислот, мол. масса 22.125 . в. Регуляторы экспрессии
(1) Соматолиберин стимулирует синтез и секрецию СТГ.
(2) Соматостатин подавляет секрецию СТГ.
(3) Другие факторы. На секрецию СТГ влияют физическая нагрузка, гипогликемия, аминокислоты (например, аргинин), β-адреноблокаторы, половые гормоны, лекарственные препараты (например, 1 -дофа, клонидин).
(4) Суточная периодичность. Пик секреции СТГ приходится на третью и четвёртую фазы сна.

г. Функции

(1) СТГ - анаболический гормон, стимулирующий рост всех тканей.
(2) Метаболические эффекты СТТ двуфазны (на примере введения экзогенного СТГ).
(а) Начальная фаза (инсулиноподобный эффект). СТГ увеличивает поглощение глюкозы мышцами и жировой тканью, а также поглощение аминокислот и синтез белка мышцами и печенью. Одновременно СТГ угнетает липолиз в жировой ткани.
(б) Отсроченная фаза (антиинсулиноподобный эффект). Через несколько часов происходят угнетение поглощения и утилизации глюкозы (содержание глюкозы в крови увеличивается) и усиление липолиза (содержание свободных жирных кислот в крови увеличивается).
(3) Голодание. При голодании и недостаточном питании секреция СТГ увеличивается. В сочетании с другими гормонами (кортизол, адреналин и глюкагон) СТГ адаптирует организм к этим ситуациям.
(a) Поддержание уровня глюкозы крови.
(б) Мобилизация жира как источника энергии.
(4) Эффекты СТГ опосредуют соматомедины.
(5) Наиболее очевидны эффекты СТГ на рост длинных трубчатых костей.
(a) Недостаточность СТГ
(i) Идиопатическая недостаточность СТГ составляет большинство случаев дефицита СТГ. Обычно развивается вследствие патологии гипоталамуса, приводящей к дефициту соматолиберина.
(ii) Мутации гена CTГ (первичная недостаточность) приводят к развитию различных форм недостаточности гипофизарного гормона роста (гипофизарная карликовость).
(iii) Вторичная недостаточность может развиваться как следствие иной патологии: опухоли ЦНС (краниофарингиома, глиома, пинеалома), травма, затронувшие гипоталамус или гипофиз хнрургические вмешательства, облучение, инфекционная инфильтрация.
(iv) Эмоциональная депривация в детском возрасте (скорее всего, вследствие уменьшения секреции соматолиберина).
(б) Избыток СТГ, как правило, развивается при СТГ-секретирующих аденомах. По завершении окостенения точек роста развивается акромегалйя, у детей (до завершения остеогенеза) - гипофизарный гигантизм.
д. Соматомедины (инсулиноподобные факторы роста) опосредуют эффекты СТГ. По этой причине диагностика недостаточности СТГ (например, существуют формы гипофизарной карликовости при нормальном уровне СТГ) требует определения в крови не только содержания СТГ, но и соматомединов.
е. Рецептор СТГ относят (вместе с рецептором пролактина, интерлейкинов $2,3,4,6$, 7 и эритропоэтина) к семейству цитокиновых рецепторов. СТГ связывается также с рецептором пролактина.
2. АКTГ и меланотропины (меланокортины).
a. Полицистронный ген проопиомеланокортина РОМС (176830, 2р25) содержит последовательности для АКТГ и β-липотропина. Так называемый большой АКТГ содержит α-меланотропин (аминокислотные остатки 1-13) и АКТГ-подобный пептид (18-39), а β-липотропин - γ-липотропин (в свою очередь содержащий β-меланотропин) и β-эндорфин.
6. Структура
(1) АКТГ состоит из 39 аминокислот.
(a) α-АКТГ - первые 24 аминокислотных остатка, обеспечивающие полную биологическую активность гормона. Эта последовательность устойчива к действию протеаз.
(б) β-АКТГ - отщепляемый протеазами от АКТГ фрагмент (не входящий в состав α-АКТГ), определяет видовую специфичность гормона.
(2) β-Меланотропин содержит 22 аминокислотных остатка.
в. Синтез АКТГ осуществляют базофильные аденоциты (кортикотрофы) преимущественно передней и в меньшей степени промежуточной доли гипофиза, а также некоторые нейроны ЦНС. Эктопическая секреция АКТГ характерна для некоторых опухолей лёгкого, щитовидной и поджелудочной желёз.

г. Регуляторы экспрессии

(1) Кортиколиберин стимулирует синтез и секрецию АКТГ (вероятно, и других продукгов гена РОМС).
(2) Глюкокортикоиды
(a) Высокие дозы глюкокортикоидов ингибируют секрецию как АКТГ, так и кортиколиберина.
(б) Низкие концентрации глюкокортикоидов в крови стимулируют секрецию АКТГ.
(3) Меланостатин подавляет секрецию меланотропинов (вероятно, и АКТГ).
(4) Стресс (например, эмоциональный, лихорадка, острая гипогликемия, хирургические операции) стимулирует секрецию АКТГ.
(5) Суточный ритм. Секреция АКТГ начинает расти после засыпания и достигает пика при пробуждении.

д. Функции

(1) Меланокортины контролируют пигментацию кожи и слизистых оболочек (см. главу 16 Б 2 6).
(2) Экспрессия АКТГ и меланокортинов в значительной степени сочетаются.
(3) АКТГ стимулирует синтез и секрецию гормонов коры надпочечников (главным образом, глюкокортикоидов).
(a) Гиперсекреция АКТГ ведёт к гиперплазии коры надпочечников с увеличением секреции не только глюкокортикоидов, но и минералокортикоидов.
(i) Болезнь Иценко-Кушшнга развивается вследствие повышенной секреции гипофизом АКТГ (например, при вырабатывающих АКТГ аденомах).
(ii) Синдром Кушинга - состояние любого происхождения, характеризующееся повышенным уровнем глюкокортикоидов.
(б) Дефицит АКТГ вызывает эндокринную недостаточность надпочечников.
(i) Первичная недостаточность развивается при патологии коры надпочечников.
(ii) Вторичная недостаточность - следствие патологии гипофиза (например, мутации гена проопиомеланокортина).
Гиперпигментация кожи и слизистых оболочек характерна для первичного поражения надпочечников.
(I) Гиперпигментация возникает вследствие эффектов меланотропинов (этот гормон аденогипофиза, как и АКТГ, образуется из одной большой молекулы-предшественника - проопиомеланокортина, секреция же АКТГ увеличивается в ответ на снижение содержания кортизола в плазме).
(II) При вторичной надпочечниковой недостаточности уровень АКТГ (а значит, и меланотропинов) не увеличен; следовательно, гиперпигментация для данного состояния не характерна.
е. Рецепторы относятся к мембранным, связанным с G-белком. Идентифицировано 2 подтипа рецепторов меланокортина. Подтип 2 связывает АКТГ.

Мутации рецепторов приводят к развитию резистентности коры надпочечников к АКТГ (глюкокортикоидная недостаточность).
3. Гонадотропные гормоны. К этой группе относят гипофизарные фоллитропин (ФСГ) и лютропин (ЛГ), а также хорионический гонадотропин (ХГТ) плаценты. Гонадотропные гормоны, а также тиротропин (ТТГ) - гликопротеины, состоящие из двүх СЕ. α-СЕ всех 4 гормонов идентична, β-СЕ различна.
a. Фоллитропин (фолликулостимулирующий гормон, ФСГ).
(1) Гены. СЕ гликопротеина кодируют разные гены.
(a) Ген FSHA (118850, 6q21.1-q23) кодирует α-цепь. Этот же ген для ЛГ, ХГТ, ТТГ именуется $L H A, C G A, T S H A$ соответственно.
(б) Ген $\operatorname{FSHB}(136530,11 \mathrm{pl} 3)$ кодирует специфичную для ФСГ β-цепь.
(i) Протяжённая делеция, включающая ген $F S H B$, приводит к развитию WAGRсиндрома.
(ii) Сдвиг рамки кодонов 61-86 вследствие замены первого нуклеотида и делеции второго и третьего кодонов 61 GTG ([GTG, val] \rightarrow [GAG, glu]) ведёт к экспрессии дефектного ФСГ (невозможность связывания с рецептором ФСГ). У женщины с этим генным дефектом (ρ) отмечены первичная аменорея и отсутствие овуляции. Заместительное введение нормального ФСГ компенсировало патологию и привело к беременности.
(2) Структура
(a) α-СЕ 4 тропных гормонов (ФСГ, ЛГ, ХГТ, ТТГ) идентична, M $_{\text {г }}-14000$.
(б) β-СЕ ФСГ, ЛГ, ХГТ, ТТГ, М, около 17000.
(3) Регуляторы экспрессии
(a) Гонадолиберин стимулирует синтез и секрецию ФСГ и ЛГ в базофилах (гонадотрофы) передней доли гипофиза.
(б) α-Ингибин - пептидный гормон, вырабатываемый зернистыми клетками фолликулов яичника и клетками Серто́ли яичка, - подавляет секрецию ФСГ, взаимодействуя с мембранными рецепторами типа II активина.
(в) Активины - пептидные гормоны, вырабатываемые зернистыми клетками фолликулов яичника н в плаценте, - cтимулируют секрецию ФСГ in vitro. Значение активинов для регуляции овариального цикла пока находится под вопросом.
(4) Функции
(а) Женщины. ФСГ, как и ЛГ, существенно важен для регуляции овариального цикла (см. главу 15.3 В 4).
(б) Мужчины. Мишени ФСГ - клетки Серто́ли (регуляция сперматогенеза).
(5) Рецептор ФСГ - трансмембранный гликопротеин, связанный с G-белком.
б. Лютропин (лютеинизирующий гормон, ЛГ).
(1) Гены. СЕ гликопротеина ЛГ кодируют разные гены.
(a) Ген $L H A(118850,6 q 21.1-q 23)$ кодирует α-цепь.
(6) Ген $\operatorname{LHB}(152780,19 \mathrm{q} 13.32)$ кодирует специфичную для ЛІГ β-цепь.

Мутации. Известно несколько мутаций гена LHB. Последствия для носителей мутантного гена самые различные (разные формы гиногонадизма, гермафродитизма,

евнухоидизм), что определяется не в последнюю очередь кариотипом носителя. Как правило, молекула ЛГ имиунологически активна, биологически не функциональна.
(2) Структура
(a) α-СЕ 4 тропных гормонов (ЛГ, ФСГ, ХГТ, ТТГ) идентична, $M_{\mathrm{r}} 14000$.
(6) β-CE с $M_{r} 17000$.
(3) Гонадолиберин стимулирует синтез и секрецию ЛГ в ЛГ-гонадотрофах.
(4) Функции
(а) Женщины. ЛГ - стимулятор эндокринной функции яичников (подробнее см. главу 15.3 в 4).
(б) Мужчины. ЛГ (стимулирующий интерстициальные клетки гормон) в клетках Ле́йдига яичек стимулирует синтез тестостерона.
(5) Рецептор ЛГ и ХГТ - трансмембранный гликопротеин, связанный с G-белком, кодируется геном $L H C G R(152790,2 \mathrm{p} 21)$. Не исключено наличие в X-хромосоме второго гена для клеток Ле́йдига.
(а) Гипоплазия клеток Ле́йдига - следствие нескольких известных мутаций гена.
(б) Преждевременное половое созревание мальчиков - результат мутаций кодонов 1624-1741 экзона 11.
(6) Преждевременный пубертат. Преждевременное изосексуальное половое созревание: девочки - менархе (первое менструальное кровотечение) до 8,5 лет, мальчики - маскулинизация до 10 лет. Причины далеко не всегда ясны, но в любом случае происходит увеличение секреции гипофизарных гонадотропинов.
(7) Недостаточность гонадотропинов приводит, как правило, к гипогонадотрофному гипогонадизму. Причины недостаточности гонадотрофов многочисленны.
(а) Гипопитуитаризм (пангипопитуитаризм).
(6) Нервно-психическая анорексия.
(в) Синдром Ко́лмена.
(r) Синдром Пра́дер-Вйлли.
в. Хорионический гонадотропин (ген $C G A$ для α-СЕ ХГТ и ген $C G B$ для β-СЕ ХГТ [118860, 19q13.32]) - гликопротеин, синтезируемый клетками трофобласта с 10-12-го дня эмбриогенеза. При беременности ХГТ взаимодействует с клетками жёлтого тела (синтез и секреция прогестерона).
Саркома Капоши. ХГТ лизирует клетки этой опухоли (скорее всего, механизмом апоптоза), но не клетки нормального эндотелия.
4. Тиротропин (тиреотропный гормон, ТТГ).
а. Гены
(1) Ген TSHA (118850, 6 q 21.1 -q23) кодирует α-цепь.
(2) Ген TSHB ($152780,1 \mathrm{p13}$) кодирует специфичную для TTГ β-цепь.
6. Структура
(1) α-СЕ 4 тропных гормонов (ТТГ, ЛГ, ФСГ, ХГТ) идентична, $\mathrm{M}_{\mathrm{r}} 14000$.
(2) β-CE с $M_{r} 17000$.
в. Синтез ТТГ происходит в базофильных клетках (тиротрофы) передней доли гипофиза.
г. Регуляторы экспрессии
(1) Соматостатин подавляет секрецию ТТГ.

Изолированная недостаточность $\mathbb{T T}$ встречается крайне редко; как правило, выражена при гипопитуитаризме или пангипопитуитаризме. В частности, по этой причине при дефиците СТГ необходимо определить содержание T_{4} в крови.
(2) Тиролиберин стимулирует синтез и секрецию ТТГ.
(3) Гормоны щитовидной железы (T_{3} и T_{4}), циркулирующие в крови, регулируют секрецию ТТГ по принципу отрицательной обратной связи.
(a) Увеличение содержания свободных T_{4} и T_{3} подавляет секрецию $T T \Gamma$.
(6) Уменьшение содержания свободных T_{4} и T_{3} стимулирует секрецию тиротропина. д. Функции. Тиротропин стимулирует дифференцировку эпителиальных клеток щитовидной железы (кроме т.к. светлых клеток, синтезирующих тирокальцитонин) и их функциональное состояние (включая синтез тироглобулина и секрецию T_{3} и T_{4}).
Вторичный гипотиреоидизм развивается при дефиците ТТГ.
e. Рецептор TTГ
(1) Ген $\operatorname{TSHR}(* 275200,14 \mathrm{q} 31)$ кодирует трансмембранный гликопротеин, связанный с G-белком.
(2) Связывание аутоантител. Внеклеточный домен рецептора ТTГ имеет участки связывания с т.н. стимулирующими щитовидную железу Ig (в т.ч. аутоантиген системной красной волчанки [локус 22 q 11 -q13]).
(3) Экспрессия гена происходит в фолликулярных клетках щитовидной железы, а также в ретробульбарных тканях, что объясняет офтальмопатии при болезни Гре́йсса.
(4) Мутации гена многочисленны, их последствия - синдромы резистентности щитовидной железы к эффектам TTГ. Эндокринная функция щитовидной железы при этих синдромах может быть увеличена (гипертиреоидизм), уменьшена (гипотиреоидизм) или нормальна (эутиреоидизм).

5. Пролактин

a. Ген $P R L$ ($176760,6 \mathrm{p} 22.2$-р21.3) кодирует полипептид, имеющий сходство аминокислотных последовательностей с СТГ и хорионическим соматомаммотрофином (плацентарный лактоген).
б. Синтез пролактина происходит в ацидофильных аденоцитах (лактотрофы) передней доли гипофиза. Количество лактотрофов составляет не менее трети всех эндокринных клеток аденогипофиза. При беременности объём передней доли удваивается за счёт увеличения числа лактотрофов и их гипертрофии.

в. Регуляторы экспрессии

(1) Пролактиностатин подавляет секрецию пролактина из лактотрофных клеток передней доли гипофиза.
(2) Дофамин ингибирует синтез и секрецию пролактина.
(3) Тиролиберин стимулирует секрецию пролактина из лактотрофов.
(4) Стимуляция соска и околососкового поля увеличивает секрецию пролактина.
д. Функции
(1) Лактация. Главная функция пролактина - регулирование функции молочной железы.
(2) Стресс. Увеличение секреции пролактина происходит при различных стрессах.
(3) Опухоли аденогипофиза. Гиперсекреция пролактина - один из важных симптомов аденом гипофиза (около половины всех гипофизарных аденом секретирует пролактин).
(4) Индуцируемый пролактином белок (ген PIP, 176730, 7q32-q76) с неизвестной функцией экспрессируется в некоторых доброкачественных и злокачественных опухолях молочной железы, а также в потовых, слюнных и слёзных железах.
e. Рецептор пролактина
(1) Ген $\operatorname{PRLR}(176763,5 \mathrm{pl} 3-\mathrm{pl} 2)$ кодирует мембранный полипептид семейства цитокиновых рецепторов.
(2) Гены рецепторов гормона роста и пролактина происходят из общего предшественника и расположены рядом в хромосоме 5 .
(3) Связывание лигандов. Рецептор пролактина также связывает СТГ, что объясняет лактогенный эффект при гиперсекреции соматотрофина (например, при акромегалии).
ж. Гиперсекреция пролактина приводит к разным нарушениям.
(1) Симптоматика
(a) Женщины. Менструальные нарушения и галакторея (синдром галактореиаменореи).
(б) Мужчины. Галакторея, импотенция и снижение ли́бидо.
(в) Дети. Задержка полового созревания.
(2) Причины. Избыток пролактина наблюдается при пролактиномах, повреждениях гипоталамо-гипофизарной области, применении лекарственных препаратов ингибиторов дофамина.
(a) Пролактиномы

Микроаденомы гипофиза (диаметр < 10 мм) имеются примерно у 15% практически здоровых женщин. При отсутствии гиперпролактинемии, других гормональных нарушений и прогрессирующего увеличения микроаденом их считают случайными находками, не имеющими клинического значения.
(б) Повреждения гипоталамуса или ножки гипофиза нарушают нормальное ингибирующее действие гипоталамического дофамина на лактотрофные клетки, что приводит к гиперсекреции пролактина.
(в) Некоторые лекарства ингибируют активность дофамина. К ним относятся психотропные средства (например, фенотиазины, трициклические антидепрессанты), гипотензивные препараты (например, метилдофа, резерпин), циметидин и другие.
3. Дефицит пролактина может стать причиной послеродовой недостаточной лактации.
Ж. Гормоны задней доли (рис. 9-11) - аргинин вазопрессин (антидиуретический гормон, АДГ), окситоцин, а также нейрофизины - синтезируются в нейросекреторных нейронах гипоталамуса. Содержащие продукты трансляции мембранные пузырьки транспортируются по аксонам этих нейронов в составе гипоталамо-гипофизарного пути в заднюю долю гипофиза, и через аксо-вазальные синапсы гормоны секретируются в кровь.

1. Окситоцин

a. Ген $O X T(167050,20 \mathrm{pl} 3)$ кодирует последовательности нанопептида окситоцина (рис. 9-11) и нейрофизина I, а также гликопротеина неизвестной функции. Гены OXT, аргинин вазопрессина и энкефалина В организованы в виде кластера и соединяются 12-килобазными фрагментами ДНК.
6. Экспрессия гена окситоцина и гена аргинин вазопрессина происходит в многоотростчатых нейронах надзрительного и околожелудочкового ядер гипоталамуса, но в отдельных группах нервных клеток.
в. Регулятор секреции окситоцина и АДГ - импульсная активность аксонов нейросекреторных нейронов. При этом окситоцин, как и АДГ, отщепляется от нейрофизинов и поступает в кровь.
r. Мишени окситоцина - ГМК миометрня и миоэпителиальные клетки молочной железы.
(1) Миометрий. Окситоцин стимулирует сокращение ГМК миометрия в родах, при оргазме, в менструальную фазу.
(2) Молочная железа. Окситоцин секретируется при раздражении соска и околососкового поля и стимулирует сокращение миоэпителиальных клеток альвеол лактирующей молочной железы (рефлекс молокоотделения).

д. Рецептор окситоцина.

(1) Ген $O X T R(167055,3 p 26.2)$ кодирует трансмембранный гликопротеин, связанный с G-белком.
(2) Экспрессия гена в ГМК миометрия существенно возрастает перед родами.

Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-GlyNH 2

Cys-Tyr-Phe-GIn-Asn-Cys-Pro-Arg-GlyNH 2
 Аргинин вазопрессин

Аргинин
Рис. 9-11. Гормоны задней доли гипофиза [по Merck Index, 12 издание, 1996]
2. Нейрофизины I и II кодируются генами окситоцина и АДГ соответственно. Их неверно именуют транспортными белками этих гормонов, функция нейрофизинов неизвестна.
3. Аргинин вазопрессин оказывает антидиуретический (регулятор реабсорбции в канальцах почки) и сосудосуживающий (вазоконстриктор) эффекты.
а. Ген $A R V P[A V P](192340,20 \mathrm{p13})$ кодирует аргинин вазопрессин (антидиуретический гормон, АДГ), нейрофизин II, а также гликопротеин неизвестной функции.

Дефекты гена приводят к развитию т.н. нейрогипофизарного (центрального) несахарного диабета (я, к).
6. Структура (рис. 9-11)
(1) Аргинин вазопрессин - нанопептид $\mathrm{C}_{46} \mathrm{H}_{65} \mathrm{~N}_{15} \mathrm{O}_{12} \mathrm{~S}_{2}$.
(2) Десмопрессин - синтетическое производное АДГ - 1 -(3-меркаптопропаноевая кислота) -8-D-АДГ [1-дезамино-8D-аргинин вазопрессин], $\mathrm{C}_{46} \mathrm{H}_{64} \mathrm{~N}_{14} \mathrm{O}_{12} \mathrm{~S}_{2}$.
(a) Мощное антидиуретическое средство.
(б) Стимулирует освобождение фактора фон Ви́ллебранда.
в. Экспрессия АДГ происходит в части нейросекреторных нейронов околожелудочкового и надзрительного ядер гипоталамуса. Внегипоталамическая секреция АДГ возможна в клетках злокачественных опухолей (например, овсяно-клеточная карцинома лёгкого, рак поджелудочной железы).

r. Регуляторы секреции АДГ

(1) Стимулируют: гиповолемия через барорецепторы каротидной области, гиперосмолярность через осморецепторы гипоталамуса (см. аквапорин 4 в главе 2 I B 16 (2) (д) (iv)), переход в вертикальное положение, стресс, состояние тревоги.
(2) Ингибируют: алкоголь, α-адренергические агонисты, глюкокортикоиды.
д. Функции. Главная функция АДГ - регуляция обмена воды (поддержание постоянного осмотического давления жидких сред организма). Обмен воды происходит в тесной связи с обменом натрия.
(1) Обмен воды
(a) Потребление. При температуре окружающей среды $+18^{\circ} \mathrm{C}$ потребление воды примерно 700 мл / день. Если потребление меньше потерь, то повышается осмолярность жидкостей организма. Нормальный ответ на потерю воды - жажда. Нервный центр, контролирующий секрецию АДГ, расположен вблизи от центра жажды и отвечает на повышение тонуса жидкостей организма.
(б) Выделение
(i) Реабсорбция в проксимальных канальцах нефрона. Из 200 л воды/ сутки, фильтрующейся в клубочках, 125 л реабсорбируется в проксимальных канальцах.
(ii) Образование осмотического градиента в мозговой части почек. Гломерулярный фильтрат, не реабсорбированный в проксимальных канальцах, поступает в петлю Хе́нле, где реабсорбция натрия без реабсорбции воды вызывает разведение мфчи и возрастание концентрации растворённых веществ в интерстиции мозговой части почек.
(iii) Транспорт в собнрательных трубочках. Вода, достигшая собирательных трубочек, реабсорбируется под влиянием АДГ (увеличивает проницаемость для воды) и экскретируется в его отсутствие (снижение проницаемости). Таким образом, АДГ влияет на осмолярность мочи.
(2) Обмен натрия

(a) Гипонатриемия

(i) Определение. Гипонатриемией обозначают концентрацию натрия в сыворотке ниже 135 мэкв /л.
[I] Псевдогипонатриемия (изотоническая гипонатриемия) возникает при переходе воды из внутриклеточной жидкости во внеклеточную. Переход обусловлен наличием осмотически активных частиц (например, глюкозы) в жидкости внеклеточного пространства. Концентрация натрия в сыворотке уменьшается, но осмолярность внеклеточной жидкости остаётся нормальной или даже выше нормы.
[II] Истинная гипонатриемия (гипотоническая гипонатриемия) имеет клиническое значение, когда концентрация натрия в сыворотке становится менее 125 мэкв /л, а осмолярность сыворотки - ниже 250 мосм / кг.
(ii) Причины
[I] Уменьшенное выделение воды почками
Сниженная скорость фильтрации в почечных тельцах. Повышенная реабсорбция в проксимальных канальцах.
Повышенная реабсорбция воды в собирательных трубочках вследствие неосмотической стимуляции секреции АДГ (см. [III]).
[II] Потребление жидкости в количестве более 1 л/час превышает экскреторную способность почек и приводит к гипонатриемии.
[III] Синдром неадекватной секреции АДГ (СНАДГ) возникает вследствие высвобождения неосмотически стимулированного АДГ при ряде состояний.

Опухоль. Некоторые опухоли вырабатывают АДГ-подобный пептид, особенно - овсяно-клеточная кариинома лёгкого.

Заболевание ЦНС. Чрезмерное высвобождение АДГ после эпилептических припадков, а также у больных с травмой мозга, опухолями головного мозга и психическими заболеваниями.
Глюкокортикоидная недостаточность. У лиц с дефицитом глюкокортикоидов может наблюдаться чрезмерное высвобождение АДГ, возникающее вследствие отсутствия ингибирования глюкокортикоидами секреции A Д . Лекарственные препараты - клофибрат, тиазидные диуретики, фенитоин. Идиопатический СНАДГ. Явной причины СНАДГ нет, и в то же время наблюдается гипонатриемия. Это состояние возможно при повышенной секреции АДГ в пожилом возрасте.
(б) Гипернатриемия
(i) Определение. Гипернатриемия - повышение концентрации натрия в крови выше 155 мэкв / л. При гипернатриемии увеличение осмолярности внеклеточной жидкости вызывает движение воды из клеток, что приводит к их обезвоживанию.
(ii) Причины
[I] Внепочечные
Снижение потребления воды
Повышение потерь через кожу (например, профузное потоотделение, ожоги, обширные воспалительные повреждения кожи).
Повышение потерь через ЖКТ (например, диарея, длительная рвота).
[II] Почечные
Осмотический диурез. Наличие осмолярно активных веществ в клубочковом фильтрате предупреждает реабсорбцию воды и натрия и приводит к возрастанию потерь воды с почками. Гипергликемия с глюкозурией - частая причина осмотического диуреза. Так как потери воды относительно больше, чем потери натрия, концентрация натрия в сыворотке при осмотическом диурезе прогрессивно увеличивается.
Снижение эффектов АДГ (разные формы несахарного диабета).
(3) Несахарный диабет - состояние, характеризующееся неспособностью концентрировать мочу, несмотря на нормальный осмотический градиент в почках. Суточный диурез может достигать $10-15$ литров. Осмолярность мочи низка (около 100 мосмоль/л). Различают центральный (гипофизарный) и нефрогенный несахарный диабет.
(a) Центральный несахарный диабет развивается при дефиците АДГ.
(б) Нефрогенный несахарный диабет обусловлен отсутствием ответа почек на АДГ либо вследствие дефекта рецептора АДГ, либо дефекта водных каналов аквапоринов (см. главу 2 I B 16 (2) (д)).

Нефрогенный несахарный диабет (тип II, 107777, 12q13, ρ) - следствие мутации гена аквапорина 2.
e. Рецепторы AДV относят к связанным с G-белком трансмембранным гликопротеинам. Взаимодействие аргинин вазопрессина с его рецепторами приводит к стимуляции фосфолипазы C, образованию фосфатидилинозитола и увеличению содержания внутриклеточного Ca^{2+}. Выделено три подтипа рецепторов $-\mathrm{V}_{\mathrm{la}}, \mathrm{V}_{\mathrm{Ib}}, \mathrm{V}_{2}$.
(1) $\mathbf{V}_{\mathbf{1}}$. Этот подтип экспрессируется в разных клетках, реализуя многочисленные эффекты аргинин вазопрессина.
(a) Гепатоциты (стимуляция гликогенолиза).
(б) Сосудистые ГМК (сосудосуживающий эффект).
(в) Тромбоциты (агрегация кровяных пластинок).
(г) Нейроны ЦНС
(2) $\mathbf{V}_{\mathbf{I}}$. Эти рецепторы обнаружены в аденогипофизе (модуляция секреции АКТГ, β-эндорфина и пролактина).
(3) \mathbf{V}_{2}. Подтип V_{2} экспрессируется только в почке.

Нефрогенный несахарный диабет (тип I, 304800, Xq28, ※, имеются и \mathfrak{R}-формы) - следствие мутаций гена для рецептора подтипа V_{2}.

III. ЭПИФИЗ

Шишковидная железа - небольшой ($5-8$ мм) конической формы вырост промежуточного мозга, соединённый ножкой со стенкой III желудочка. Капсула образована соединительной тканью мягкой мозговой оболочки. От капсулы отходят перегородки, содержащие кровеносные сосуды и сплетения симпатических нервных волокон. Эти перегородки не полностью разделяют тело железы на т.н. дольки. Паренхима органӑ состоит из пинеалоцитов и интерстициальных (глиальных) клеток. В интерстиции присутствуют отложения солей кальция, известные как мозговой песок (corpora arenacea). Иннервация: орган снабжён многочисленными постганглионарными нервными волокнами от верхнего шейного симпатического узла. Функция органа у человека изучена слабо, хотя железа у ряда позвоночных выполняет различные функции (например, у некоторых амфибий и рептилий эпифиз содержит фоторецепторные элементы [т.н. теменной глаз]), иногда бездоказательно переносимые на человека. Эпифиз у человека, скорее всего, - звено реализации биологических ритмов, в т.ч. околосуточных.

1. Пинеалоциты. Клетки содержат крупное ядро, хорошо развитую гладкую эндоплазматическую сеть, элементы гранулярной эндоплазматической сети, свободные рибосомы, комплекс Го́льджи, множество секреторных гранул, микротрубочки и микрофиламенты.
а. Контакты. Многочисленные длинные отростки пинеалоцитов заканчиваются расширениями на капиллярах и среди клеток эпе́ндимы. В концевых отделах части отростков присутствуют непонятного назначения структуры - плотные трубчатые элементы, окружённые т.н. синаптическими сфероидами.
2. Мелатонин (N-ацетил-5-метокситриптамин, $c \boldsymbol{c}$. рис. 9-12) синтезируется и секретируется в цереброспинальную жидкость и в кровь преимущественно в ночные часы.

Мелатонин

Серотонин
Рис. 9-12. Мелатонин и серотонин [по Merck Index, 12 издание, 1996]
(1) Применяется в ветеринарной практике как средство контроля эструса (подавляет функцию половых желёз).
(2) У амфибий вызывает сокращение меланофоров (кожа светлеет).
(3) Участвует в терморегуляции у холоднокровных.
в. Серотонин (5-гидрокситриптамин, см. рис. 9-12) синтезируется преимущественно в дневные часы.
2. Интерстициальные клетки напоминают астроциты, имеют многочисленные ветвящиеся отростки, округлое плотное ядро, элементы гранулярной эндоплазматической сети и структуры цитоскелета: микротрубочки, промежуточные филаменты и множество микрофиламентов.
3. Околосуточный ритм. Циркадиа́нный ритм - один из бнологических ритмов (суточная, помесячная, сезонная и годовая ритмика), скоординированный с суточной цикличностью вращения Земли; несколько не соответствует 24 часам. Многие процессы, в т.ч. гипоталамическая нейросекреция, подчиняются околосуточному ритму. Механизмы околосуточного ритма начинают приобретать описательные контуры.
a. Изменения освещённости через зрительный тракт оказывают влияние на разряды нейронов надперекрёстного ядра (nucleus suprachiasmaticus) ростровентральной части гипоталамуса.
6. Надзрительное ядро содержит т.н. эндоге́нные часы - неизвестной природы генератор биологических ритмов (включая околосуточный), контролирующий продолжительность сна и бодрствования, пищевое поведение, секрецию гормонов и т.д.

Сигнал генератора - гуморальный фактор, секретируемый из надзрительного ядра (в т.ч. в цереброспинальную жидкость).
в. Околожелудочковое ядро (n. paraventricularis). Сигналы от надзрительного ядра через нейроны околожелудочкового ядра активируют преганглионарные симпатические нейроны боковых стол6ов спинного мозга (columna lateralis).

Либерины и статины. Суточная ритмика синтеза и секреции рилизинг-гормонов гипоталамуса (в m.ч. околожелудочкового ядра) - хорошо известный факт.
r. Симпатические преганглионары активируют нейроны верхнего шейного узла.
д. Постганглионарные симпатические волокна от верхнего шейного узла секретируют норадреналин, взаимодействующий с α - н β-адренорецепторами плазмолеммы пинеалоцитов.
е. Активация адренорецепторов приводит к увеличению внутриклеточного содержания цАМФ и экспрессии гена CREM, а также к транскрипции арилалкиламин- N-ацетилтрансферазы, фермента синтеза мелатонина.
(1) Суточная периодичность содержания цАМФ, изоформ $C R E M$, активности арилалкила-мин- N-ацетилтрансферазы - результат функционирования эндогенных часов и их модуляции освещённостью.
(2) Мелатонин синтезируется преимущественно в ночные часы.

IV. ЩИТОВИАНАЯ ЖЕЛЕЗА

Щитовидная железа секретирует регуляторы основного обмена: йодсодержащие гормоны трийодтиронин $\left(\mathbf{T}_{\mathbf{3}}\right)$ и тироксин $\left(\mathbf{T}_{\mathbf{4}}\right)$, а также кальцитонин - один из эндокринных регуляторов обмена Ca^{2+}. Йодсодержащие гормоны вырабатывают эпителиальные клетки стенки фолликулов, кальцитонин - светлые клетки. Две пары паращитовидных желёз (верхние и нижние), секретирующие антагонист кальцитонина - паратиреокрин, почти всегда анатомически тесно связаны с щитовидной железой.
А. Источники. Эндокринные клетки щитовидной железы имеют двоякое происхождение: из стенки глотки и нервного гребеня.

1. Глотка. Эпителий бранхиогенной группы желёз (щитовидная, вилочковая, околощитовидные) развивается из энтодермы глоточных карманов (см, главу 12 I 62 а).

a. Паращитовидные железы

(1) Нижние - третья пара глоточных карманов.
(2) Верхние - четвёртая пара.
6. Щитовидная железа. Зачаток щитовидной железы в виде выпячивания крыши глотки между первой и второй парами глоточных карманов (у корня языка) возникает на 3-4-й неделе внутриутробного развития. Эпителиальный зачаток железы растёт вентральнее хрящей гортани и к 7 -й неделе достигает места окончательной локализации, формируя две доли и перешеек.
(1) Ductus thyroglossus. Зачаток железы сначала связан с глоткой при помощи полого тяжа, открывающегося на поверхности корня языка (позднее - foramen coecum). Нормально этот тяж дегенерирует.
(a) Кисты. При неполной дегенерации эпителиального тяжа по его протяжению могут возникать шейные кисты.
(б) Дополнительные желёзки. Часть клеток тяжа может образовать функционально активные островки эндокринной ткани щитовидной железы.
(в) Пирамидальная доля железы - наиболее близкий к телу железы остаток тяжа.
(2) Специфическая дифференцировка. Транскрипционный фактор TTF1 (белок с M $_{\text {r }} 35$ кД) активирует гены тироглобулина, тиропероксидазы, рецепторов ТТГ и N-ацетилглюкозамина.
(3) Пренатальная железа. В конце третьего месяца развития плода начинается синтез йодсодержащих гормонов, появляющихся в амниотической жидкости.
(a) Содержание $T_{3}+T_{4}$ амниотической жидкости меньше $T_{3}+T_{4}$ крови матери.
(6) Содержание rT ${ }_{3}$ (с.. IV B1в (5)) в амниотической жидкости много выше такового в крови матери. Это обстоятельство означает, что преобладающий йодсодержащий гормон плода $-\mathrm{rT}_{3}$.
Измерение rT_{3} в амниотической жидкости используют для диагностики возможной недостаточности функции щитовидной железы (гипотиреоидизм плода).
в. Вилочковая железа. Третья и четвёртая пары глоточных карманов.
2. Нервный гребень. Синтезирующие кальцитонин светлые (С-клетки) щитовидной железы развиваются из клеток нервного гребня.
Б. Строение (рис. 9-13). Как и всякий орган, щитовидная железа складывается из двух основных частей - стромы и паренхимы.

1. Строма состоит из вспомогательных структур.
a. Капсула сформирована из плотной волокнистой соединительной ткани.
2. От капсулы отходят тяжи (стандартное наименование - септы, или трабекулы) плотной волокнистой соединительной ткани, содержащие кровеносные и лимфатические сосуды, нервы.
в. Интерстиций. Пространство органа заполняет поддерживающий элементы паренхимы каркас из рыхлой волокнистой соединительной ткани с кровеносными и лимфатическими сосудами, отдельными нервными волокнами и их окончаниями.
(1) Кровоток железы интенсивен и сопоставим с кровоснабжением мозга, перфузией крови через почки и печень.
(2) Кровеносные капилляры фенестрированного типа контактируют с эндокринными клетками паренхимы.
(3) Иннервация
(a) Соматическая чувствительная. В железе найдены чувствительные нервные окончания, образованные ветвлениями периферических отростков чувствительных нейронов.

Рис. 9-13. Щитовидная железа [из Stöhr P, Möllendorff W, 1933]
(6) Двигательная вегетативная (симпатическая и парасимпатическая). Преобладают сопровождающие кровеносные сосуды и иннервирующие их ГМК варикозные ветвления постганглионарных симпатических нейронов. Влияние вегетативной иннервации на эндокринную функцию незначительно.
2. Паренхима - совокупность гистологических элементов, выполняюцих основную функцию органа. Паренхима щитовидной железы (эндокринная функция) - совокупность секретирующих тиреоидные гормоны клеток и С-клеток, синтезирующих кальцитонин. И те, и другие входят в состав фолликулов и скоплений межфолликулярных клеток.
a. Фолликулы - различной величины и формы (преимущественно округлые) образования, содержащие колиид. Стенка фолликула образована эпителнальными фолликулярными клетками (синтез T_{4} и T_{3}), прикреплёнными к базальной мембране. Между базальной мембраной и фолликулярными клетками встречаются более крупные светлье клетки (синтез кальцитонина).
(1) Фолликулярные клетки (тироциты, рис. 9-14) образуют стенку фолликула и формируют его содержимое, синтезируя и секретируя в коллоид тироглобулин. Тиропероксидаза и рецептор N-ацетилглюкозамина (другие специфические для фолликулярных клеток белки) также синтезируются в фолликулярных клетках.
(a) Функции. Основная функция фолликулярных клеток - синтез и секреция T_{4} и T_{3} - складывается из многих процессов:

Рис. 9-14. Участие фолликулярных клеток в секреции йодсодержащих гормонов [из Јипqиеіга $L C$, Cameino J, 1991]
(i) поглощения йода,
(ii) окисления йода,
(iii) образования тироглобулина,
(iv) секреции тироглобулина в полость фолликула,
(v) йодирования тироглобулина,
(vi) эндоцитоза и расщепление тироглобулина,
(vii) секреции T_{3} и T_{4}.
(б) Морфология
(i) Форма клеток (от низкокубической до цилиндрической) эпителиальной стенки фолликула зависит от интенсивности их функционирования: высота клеток пропорциональна напряжённости осуществляемых в них процессов.
Тиротропин стимулирует функцию фолликулярных клеток.
(ii) Полярная дифферевцировка эпителиальных клеток выражена хорошо.
[I] Базальная часть клеток содержит ядро, гладкий и шероховатый эвдоплазматический ретикулум. В плазмолемму вмонтированы рецепторы TTГ. Возможна складчатость плазмолеммы (отражает интенсивность обмена между клетками и кровеносными капиллярами - захват йода, поступление метаболитов, секреция гормонов).
[II] Латеральная часть клеток содержит мещклеточные контакты, предупреждающие просачивание коллоида.
[III] Апикальная часть содержит выраженный комплекс Говьдзси (формирование секреторных пузырьков, присоединение углеводов к тироглобулину), разные

Abstract

типы пузырьков (секреторные [содержат тироглобулин], окаймлённые [незрелый тироглобулин из полости фолликула поступает в клетку для йодирования], эндоцитозные [содержат зрелый тироглобулин для его последующей деградации в фаголизосомах I), микроворсннки (увеличение поверхности обмена между клетками и полостью фолликула). Апикальная плазмолемма содержит рецепторы N-ацетилглюкозамина (связывание незрелого тироглобулина для его интернализации путём опосредованного этими рецепторами эндоцитоза). В связи с мембранными структурами апикальной части клеток находится тиропероксидаза.

(iii) Митохондрии, лизосомы, фаголизосомы рассеяны по цитоплазме.
(2) Термин коллоид точно определяет физико-химическую природу содержимого фолликулов. Главный компонент - тироглобулин различной степени зрелости.
(a) Незрелый тироглобулин (нейодированный и частично йодированный) секретируется тироцитами в полость фолликула.
(б) Созревание тироглобулина происходит примерно в течение двух суток в апикальной части фолликулярных клеток путём его йодирования при помощи тиропероксидазы.
(в) Термин рециклизация тироглобулина обозначает циклы интернализации незрелого тироглобулина из коллоида в апикальную часть тироцитов, йодирование тироглобулина и его секрецию в коллоид.

Интернализация тироглобулина происходит путём опосредованного рецепторами N-ацетилглюкозамина эндоцитоза.
(r) Зрелый тироглобулин (полностью йодированный) - прогормон йодсодержащих гормонов, форма их хранения в коллоиде. По мере необходимости зрелый тироглобулин фагоцитируется тироцитами, поступает в лизосомы и расщепляется в фаголизосомах. Аминокислоты используются для новых синтезов, а T_{3} и T_{4} из базальной части клеток поступают в кровь.
(3) C-клетки (произносят *си-клетки*, от англ. саlcitonin, кальцитонин) в составе фолликулов называют также парафолликулярными клетками. В них происходит экспрессия кальцитонинового гена CALC1, кодирующего кальцитонин, катакальцин и относящийся к кальцитониновому гену пептид α. С-клетки крупнее тироцитов, в составе фолликулов расположены, как правило, одиночно. Морфология этих клеток характерна для клеток, синтезирующих белок на экспорт (присутствуют шероховатая эндоплазматическая сеть, комплекс Го́льджи, секреторные гранулы, митохондрии). На гистологических препаратах цитоплазма С-клеток выглядит светлее цитоплазмы тироцитов, отсюда их название - светлые клетки.
(4) Хю́ртля клетки. Иногда (например, при болезни Хашимо́то) в составе стенки фолликулов или между фолликулами находят крупные клетки с зернистой оксифнльной цитоплазмой, содержащие много митохондрий - онкоциты, или клетки Хю́ртия (Гю́ртля, такжсе Аскана́зи-Хю́ртля).

К сожалению, по отношению к этим клеткам наблюдается терминологическая путаница. Иногда их именуют парафолликулярные (т.е. С-клетки); более того, в части источников клетками Аскана́зи-Хю́ртля называют продуцирующие кальцитонин клетки.
6. Межфолликулярные клетки. К паренхиме щитовидной железы, помимо образующих фолликулы клеток, относятся также островки клеток, расположенные между фолликулами. Островки образованы способными синтезировать йодсодержащие гормоны клетками (малодифференцированные тироциты, формирующие новые фолликулы), а также С-клетками.
В. Гормоны. Щитовидная железа секретирует йодсодержащие гормоны и продукты экспрессии кальцитонинового гена (в т.ч. кальцитонин).

1. Иодсодержащие гормоны $-\mathrm{T}_{4}$ и T_{3} (рис. 9-15) - образуются в составе тироглобулина при йодировании тирозила (формируются монойодтирозил и дийодтирозил). Затем тироглобулин расщепляется в фаголизосомах до реутилизируемых клеткой аминокислот, а из монойодтирозина и дийодтирозина образуются трийодтиронин $\left[\mathrm{T}_{3}\right]$ и тетрайодтиронин $\left[\mathrm{T}_{4}\right]$. Этот процесс, а также йодирование тирозина катализирует тиропероксидаза. Далее йодированные соединения выделяются из клетки.
a. Монойодтирозин образуется при введении йода по одной позиции тирозила.
б. Дийодтирозин образуется при введении йода по двум позициям тирозила. Гормональной активностью, как и монойодтирозин, не обладает; оба соединения выделяются из фолликулярных клеток, но быстро захватываются обратно и дейодинируются.
в. Тироксин $\{\beta \cdot[(3,5$-дийодо-4-гидроксифенокси)-3,5-дийодофенил $]$ аланин, или $3,5,3$ ',5'тетрайодтиронин, $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{I}_{4} \mathrm{NO}_{4}$, мол. масса 776,87$\}$ образуется из пары дийодтирозинов. Тироксин - основной иодсодержащий гормон, на долю T_{4} приходится не менее 90% всего содержащегося в крови йода.
(1) Транспорт в крови. Не более $0,05 \% \mathrm{~T}_{4}$ циркулирует в крови в свободной форме, практически весь тироксин находится в связанной с белками плазмы форме. Главный транспортный белок - тироксин-связывающий глобулин (связывает $80 \% \mathrm{~T}_{4}$), на долю тироксин-связывающего преальбумина, а также альбумина приходится $20 \% \tau_{4}$.
(2) Время циркуляции в крови (время полужизни) T_{4} около 7 дней, при гипертиреоидизме - 3-4 дня, при гипотиреоидизме - до 10 дней.
(3) L-форма тироксина физиологически примерно вдвое активнее рацемической ($\boldsymbol{D L}$-тироксин), \boldsymbol{D}-форма гормональной активности не имеет.
(4) Дейодирование наружного кольца тироксина (рис. 9-15), частично происходящее в щитовидной железе, осуществляется преимущественно в печени и приводит к образованию T_{3}.
(5) Дейодирование внутреннего кольца тироксина (рис. 9-15) происходит в щитовидной железе, преимущественно в печени и частично в почке, в результате образуется т.н. реверсивный (обратный) T_{3} ($3,3^{\prime}, 5^{\prime}$-трийодтиронин, TT_{3} [от англ. [everse]), имеющий незначительную физиологическую активность.
г. Трийодотиронин $[3,5,3$ 'трийодтиронин, или 4 -(3-иодо-4-гидроксифенокси) 3,5 -дийодофенилаланин, $\mathrm{C}_{15} \mathrm{H}_{12} \mathrm{I}_{3} \mathrm{NO}_{4}$, мол. масса 650,98$]$ образуется из монойодтиронина и дийодтиронина. На долю T_{3} приходится лишь 5% содержащегося в крови йода, но T_{3} не менее важен, чем тироксин, для реализации эффектов йодсодержащих гормонов.
(1) Транспорт в крови. Не более $0,5 \% \mathrm{~T}_{3}$ циркулирует в крови в свободной форме, практически весь трийодтиронин находится в связанной форме.
(2) Физиологическая активность T_{3} примерно в четыре раза выше, чем тироксина, но время полужизни вдвое меньше.
(3) В щитовидной железе образуется около 15% циркулирующего в крови T_{3}. Остальной трийодтиронин образуется при монодейодировании наружного кольца тироксина, происходящем преимущественно в печени.
д. Функции йодсодержащих гормонов многочисленны. Например, T_{3} и T_{4} увеличивают обменные процессы, ускоряют катаболизм белков, жиров и углеводов, необходимы для нормального развития ЦНС, увеличивают частоту сердечных сокращений и сердечный выброс. Крайне разнообразные эффекты йодсодержащих гормонов на клеткимишени (ими практически являются все клетки организма) объясняют увеличением синтеза белков и потребления кислорода.
(1) Синтез белков увеличивается в результате активации транскрипции в клеткахмишенях.
(2) Потребление кислорода возрастает в результате увеличенной активности $\mathrm{Na}^{+}, \mathrm{K}^{+}$АТФазы.

Тирозин

Карбокальцитонин

Рис. 9-15. Гормоны щитовидной железы [по Merck Index, 12 нздание, 1996]
e. Рецепторы тиреоидных гормонов относят к факторам транскрипции. Известно не менее трёх подтипов: $\alpha_{1}, \alpha_{2}, \beta$. Подтипы α_{1} и β - трансформирующие гены $E R B A 1$ и ERBA2 соответственно.
(1) Подтип α_{1} (онкоген ERBA1, 190120,17q11.2) экспрессируется преимущественно в ЦНС, практически отсутствует в печени.
Кретинизм. Имеется аутосомно-доминантная форма врождённого кретинизма.
(2) Подтип α_{2} экспрессируется в печени, почке, плаценте, мозге и других органах.

Врождённая глухота. Известны мутации гена, приводящие, в частности, к глухоте и дефектам скелета.
(3) Подтип β (онкоген $E R B A 2,190160,3$ р24.3) экспрессируется во многих органах. Нечувствительность к тиреоидным гормонам. Известно около 40 дефектов гена, приводящих на фоне различной выраженности гипертиреоидизма к развитию различных синдромов.
(i) Гиперактивности синдром
(ii) Периодическая тахикардия
(iii) Затруднённое обучение
(iv) Низкорослость
(v) Глухота
ж. Оценка функций щитовидной железы должна проводиться по многим параметрам.
(1) Радиоиммунологический анализ позволяет прямо измерять содержание $\mathrm{T}_{3}, \mathrm{~T}_{4}$, TTГ. При этом следует учитывать соотношение между свободными и связанными формами гормонов.
(2) Поглощение гормонов смолами - широко используемый непрямой метод определения связывающих гормоны белков.
(3) Индекс свободного тироксина - оценка свободного T_{4} с учётом содержания связывающих гормоны белков.
(4) Тест стимуляции ТТГ тиролиберином определяет секрецию в кровь тиротропина в ответ на внутривенное введение тиролиберина.
(5) Тесты выявления АТ к рецепторам ТТГ выявляют гетерогенную группу Ig , связывающихся с рецепторами TT эндокринных клеток щитовидной железы и изменяющих её функциональную активность.

Аутоантитела обнаружены и к другим белкам щитовидной железы (например, к тиропероксидазе). Имеются также наследуемые формы аутоиммунных заболеваний щитовидной железы.
(6) Сканирование щитовидной железы при помощи изотопов технеция (${ }^{99 \mathrm{~m} T \mathrm{~T} \text {) позволяет }}$ выявить области пониженного накопления радионуклида (холодные узлы), обнаружить эктопические очаги щитовидной железы или дефект паренхимы органа. ${ }^{\text {9эп }}$ Tс накапливается только в щитовидной железе, период полувыведения составляет всего 6 часов.
(7) Исследование поглощения радиоактивного йода при помощи йода-123 (${ }^{233}$) и йода-131 $\left.{ }^{(311}\right)$.
(8) Содержание йода в питьевой воде. Проводится йодирование воды на водопроводных станциях.
3. Тиреоидный статус определяет эндокринную функцию щитовидной железы. Эутиреоидия - отсутствие отклонений. Заболевание щитовидной железы можно предлоложить при появлении симптомов недостаточности эндокринной функции (гипотиреоз), избыточных эффектов тиреоидных гормонов (гипертиреоз) либо при очаговом или диффузном увеличении щитовидной железы (зоб).
(1) Гипотиреоз
(a) Врождённый (первичный) гипотиреоидизм - относительно частая патология (1 на 4000 новорождённых). Раннее выявление патологии может предотвратить развитие серьёзных неврологических осложнений. Разработаны методы массового обследования тиреоидного статуса. B отечественной практике оценка проводится по уровню TTГ на пятый день жизни.
(б) Ювенильный (приобретённый) гипотиреоидизм. Приобретённым называют гипотиреоидизм, проявляющийся после первого года жизни. Ювенильный гипотиреоидизм чаще встречается у девочек. Наиболее распространённая причина - аутоиммунное поражение щитовидной железы. Для лечения проводят заместительную терапию (синтетический L-тироксин).
(в) Хронический тиреоидит - наиболее частая причина гипотиреоза у взрослых.
(2) Гипертиреоз
(a) Болезнь Гре́йвса (диффузный токсическнй зоб) - наиболее частая причина гипертиреоза. Это аутоиммунное заболевание, при котором тиреоид-стимулирующие Ig связываются с рецепторами ТТГ на фолликулярных клетках щитовидной железы, что приводит к диффузному увеличению железы и стимуляции выработки тиреоидных гормонов.
(б) Болезнь Пла́ммера (узловой токсический зоб) встречается реже, чем болезнь Гре́йвса, и обычно у пожилых лиц.
(3) 306

Тиреоидит Хаснмо́то (хронический лимфоцитарный тиреоидит) - частое аутоиммунное заболевание, поражающее в основном женщин. У большинства больных находят антитиреоидные AT.
(4) Узелки в щитовидной железе выявляют у 1% лиц в возрасте около 20 лет и у 5% лиц в возрасте около 60 ; рак обнаруживают в $10-20 \%$ обследованных узелков. Узелки щитовидной железы могут быть аденомами, кистами, локализованными участками хронического тиреоидита, коллоидными узелками, геморрагической некротической тканью или карциномой.
2. Кальцитонин и другие пептиды кальцитониновых генов $C A L C$.
а. Гены. Известно три гена кальцитонина. $C A L C 1$ и $C A L C 2$ кодируют последовательности Ca^{2+}-регулирующих гормонов и относящихся к кальцитониновому гену пептидов. Транскрипты подвергаются альтернативному сплайсингу, что приводит к органоспецифичному синтезу разных пептидов. CALC3 - нетранскрибируемый псевдоген.
(1) Ген CALC1 (114130, 11p15.2-p15.1) содержит последовательности пептидных гормонов кальцитонина (экзон 4), катакальцина и (относящегося к кальцитониновому гену) пептида α (экзон 5). В нормальной щитовидной железе экспрессируются последовательности регуляторов Ca^{2+} - кальцитонина и катакальцина; пептнд α нормально в щитовидной железе не экспрессируется.
Медуллярная карцинома щитовидной железы развивается из C -клеток, в её клетках синтезируются все три пептида.
(2) Ген CALC2 (114160, 11pter-1lq12) содержит последовательности разных пептидов, включая кальцитонин и (относяцийся к кальцитониновому гену) пептид β. Похоже, CALC2 не транскрибируется в С-клетках.

б. Гормоны

(1) Кальцитонин - пептид, содержащий 32 аминокислотных остатка, мол. масса 3421. В клинике применяют синтетические аналоги гормона человека, свиньи, лосося.
(a) Карбокальцитонии (рис. 9-15) - синтетический аналог кальцитонина, $\mathrm{C}_{148} \mathrm{H}_{244} \mathrm{~N}_{42} \mathrm{O}_{47}$, мол. масса 3363,821 , значительно устойчивее кальцитонина.
(б) Регулятор экспрессии - Ca^{2+} плазмы крови, внутривенное его введение существенно увеличивает секрецию кальцитонина.
(в) Функции кальцитонина, как одного из регуляторов кальциевого обмена, определяют как антагонистические функциям гормона паращитовидной железы.
(i) Уменьшение содержания $\mathbf{C a}^{2+}$ в крови (паратиреокрин увеличивает содержание Ca^{2+}).
(ii) Стимуляция минерализации кости (ПТГ усиливает резорбцию кости).
(iii) Усиление почечной экскреции $\mathbf{C a}^{2+}$, фосфатов и $\mathbf{N a}{ }^{+}$(уменьшается их реабсор6ция в канальцах почки).
(iv) Желудочная и панкреатическая секрецвя. Кальцитонин уменьшает кислотность желудочного сока и содержание амилазы и трипсина в соке поджелудочной железы.
(v) Гормональная регуляция костной ткани (см. главу 6.3 Б 11).
(г) Рецептор кальцитонина (ген $C A L C R, 114131,7 q 22$) относится к семейству рецепторов секретина, при связывании кальцитонина с рецептором в клеткахмишенях (например, остеокласты) происходит увеличение содержания цАМФ.
(д) Семейный полиэндокринный аденоматоз (СПЭА). При некоторых формах СПЭА развивается продуцирующая кальцитонин медуллярная карцинома щитовидной железы.
(2) Катакальцин - пептид, состоящий из 21 аминокислотного остатка, - имеет те же функции, что и кальцитонин.
(3) Относящиеся к кальцитониновому гену пептиды $\boldsymbol{\alpha}$ и $\boldsymbol{\beta}$ (37 аминокислот) экспрессируются в ряде нейронов ЦНС и на периферии (особенно в связи с кровеносными сосудами). Их функции - участие в ноцицепции, пищевом поведении, а также в регуляции тонуса сосудов. Рецепторы к этим пептидам найдены в ЦНС, сердце, плаценте.

V. ОКОАОЩИТОВИАНЫЕ ЖЕЛЕЗЫ

Четыре небольшие паращитовидные железы расположены на задней поверхности и под капсулой щитовидной железы. Функция железы - синтез и секреция Ca^{2+}-регулирующего пептидного гормона паратиреокрина (ПТГ). ПТГ вместе с кальцитонином и катакальцином, а также витамином D регулирует обмен кальция и фосфатов.
A. Строение (рис. 9-16). Каждая из четырёх желёз имеет собственную тонкую капсулу, от которой отходят перегородки (септы), содержащие кровеносные сосуды. Паренхима, образованная тяжами и островками эпителиальных клеток, содержит два типа клеток - главные и оксифильные.

Рис. 9-16. Паращитовидная железа [из Stöhr P, Möllendorff W, 1933]

1. Главные клетки имеют базофильную цитоплазму (развита гранулярная эндоплазматическая сеть), комплекс Го́льджи, мелкие митохондрии и секреторные гранулы диаметром 200-400 нм, содержащие ПТГ.

Семейный полнэндокринный аденоматоз (СПЭА) - опухоли в двух и более эндокринных железах, чаще в островковой части поджелудочной железы и в паращитовидной железе (источник - главные клетки); нередко сопровождаются повышением желудочной секреции и образованием пептических язв желудка.
2. Оксифильные клетки равномерно распределены в паренхиме железы или образуют небольшие скопления, содержат крупные митохондрии, слабо выраженный комплекс Го́льджи и умеренно развитую гранулярную эндоплазматическую сеть. Функция оксифильных клеток неизвестна, их число с возрастом увеличивается.
3. Жировые клетки всегда присутствуют в железе, с возрастом их количество увеличивается.
4. Тиреоидэктомия. В силу того, что паращитовидные железы топографически связаны с щитовидной железой, при резекции последней существует опасность удаления паращитовидных желёз. При этом развиваются гипокальциемия, тетания, судороги, возможна смерть.
Б. Паратиреокрин (паратирин, паратгормон, гормон паращитовидной железы, паратиреоидный гормон, ПТГ).

1. Ген $P T H$ ($168450,11 \mathrm{pl5} .3$-pl5.1) кодирует прогормон, процессируемый конвертазой (фурин) до мРНК ПТГ.
a. Фурин (ген FUR, 136950, 15q25-q26). Экспрессия гена происходит одновременно с экспрессией гена РTH.
2. Мутации. Известно несколько мутаций гена $P T H$, приводящих к развитию гипопаратиреоидизма ($\boldsymbol{R}^{\text {и } \rho \text {). }}$
3. Структура. ПТГ - полипептид из 84 аминокислотных остатков.

Подобный ПТГ гормон (ген PTHLH, 168470, 12p12.1-р11.2) - полипептид, имеющий идентичные аминокислотные последовательности с ПТГ.
(1) Гиперкальциемия при злокачественных опухолях, вероятно, связана с ПТГ-подобными эффектами этого гормона.
(2) Антипролиферативная активность полипептида (гормон расценивают как регулятор пролиферации эпидермиса) изучается как свойство, пригодное для лечения псориаза.
3. Регулятор экспрессии ПТГ - ионы Ca^{2+}, взаимодействующие с трансмембранными рецепторами главных клеток паращитовидных желёз.
a. Ca^{2+} сыворотки регулирует секрецию ПТТ по механизму отрицательной обратной связи.
(1) Гипокальциемия усиливает секрецию ПТГ.
(2) Гиперкальциемия уменьшает секрецию ПТГ.
6. Рецептор $\mathbf{C a}^{2+}$ паращитовидной железы (Ca^{2+}-сенсор, ген PCAR1, 145980, 3q21-q24) относится к вмонтированным в плазмолемму главных клеток гликопротеинам, связанным с G-белком.
в. Мутации $\mathbf{C a}^{2+}$-сенсора - причина развития семейной формы гипокальциурической гипокальциемии, тяжёлого гиперпаратиреоидизма новорождённых (см. табл. 2-2).
4. Функции. ПТГ поддерживает гомеостаз кальция (рис. 9-17).
a. ПТГ увеличивает содержание кальция в сыворотке, усиливая его вымывание из костей и канальцевую реабсорбцию в почках.
б. ПТГ стимулирует образование кальцитриола в почках, кальцитриол же усиливает всасывание кальция и фосфатов в кишечнике.
в. ПТГ уменьшает реабсорбцию фосфатов в канальцах почки и усиливает их вымывание из костей.

Рис. 9-17. Эффекты ПТГ для поддержания гомеостаза кальция

5. Рецептор ПТГ и подобного ПТГ гормона (ген PTHR, 168468, 3p22-р21.1) - трансмембранный гликопротеин, имеющий выраженную гомологию с рецептором кальцитонина. При связывании лигандов с рецептором в клетках-мишенях (костная ткань и почка) происходит увеличение внутриклеточного содержания цАМФ.
a. Мутации гена $P T H R$ приводят к развитию метафизарной хондродисплазии.
б. Олбрайта наследственная остеодистрофия. Разные формы этого заболевания развиваются при дефектах генов, кодирующих G-белки (в частности, гена GNAS1 [139320, 20q13.2], кодирующего α-СЕ стимулирующего аденилатциклазу белка).
В. Обмен кальция. Гомеостаз кальция и фосфора поддерживается адекватным поступлением в организм кальция, фосфора и витамина D, нормальной минерализацией скелета, основного резервуара фосфатов и кальция.
6. Кальций сыворотки. Кальций находится в сыворотке в трёх формах. Около 40% связано с белком, около $5-15 \%$ находится в комплексе с такими анионами, как цитрат и фосфат, а оставшаяся часть находится в несвязанной форме в виде ионов кальция $\left(\mathrm{Ca}^{2+}\right)$. Кальций сыворотки в ионизированной форме имеет наиболее важное клиническое значение. Уровень сывороточного кальция в норме у мужчин достигает 10,5 мг $\%$ и 10,2 мг \% у женщин.
7. Гипокальциемия - концентрация кальция сыворотки менее $8,5 \mathrm{mr} \%$. Дефицит ІІТГ - главный фактор гипокальциемии.
8. Гиперкальциемия - результат нарушений, вызывающих повышенное всасывание кальция в ЖКТ или повышенную резорбцию кальция из костей. Гиперсекреция ПТГ основная причина гиперкальциемии.
а. Первичный гиперпаратиреоз возникает в результате гиперсекреции ПТГ с последующим развитием гиперкальциемии. Первичный гиперпаратиреоз встречают у 1 человека из 1000 . Особенно часто страдают женщины среднего и старшего возраста. Аденома паращитовидной железы - причина $80-90 \%$ случаев заболевания, а гиперплазия всех четырёх желёз вызывает $10-20 \%$ случаев первичного гиперпаратиреоза.
(1) Почечные проявления
(a) Гиперкальциурия и камни мочевых путей. Хотя ПТГ повышает почечную реабсорбцию кальция, гиперкальциемия и обусловленная ею повышенная клубочковая фильтрация кальция приводят к гиперкальциурии с возможным образованием камней в мочевых путях.
(6) Хроническая гиперкальциемия приводит к отложению солей кальция в паренхиме почек (нефрокальциноз), возникает почечная недостаточность.
(2) Скелетные проявления. Избыток ПТГ повышает резорбцию кости остеокластами и приводит к нарушению метаболизма костей (паратиреоидная остеодистрофия).
(a) Возникает деминерализация скелета.
(б) Рентгенологически выявляют генерализованный остеопороз.
9. Опухоли
(1) Злокачественные опухоли с метастазами в кости могут привести к гиперкальциемии, возникающей вследствие усиленной резорбции кости, реже - за счёт местного действия гуморальных веществ (например, фактора активации остеокластов), вырабатываемых метастатической опухолью.
(2) Опухоли без костных метастазов вызывают гнперкальциемию, вырабатывая относящийся к ПТГ пептид.

в. Другие причины гиперкальциемни

(1) Гипертиреоз вызывает гиперкальциемию вследствие усиления метаболизма костной ткани.
(2) Длительная иммобилизация может привести к гиперкальциемии вследствие резорбции кости. Проблема особенно часто возникает у больных, прикованных к постели в течение длительного времени.
4. Perуляторы. Сывороточную концентрацию Ca^{2+} и фосфатов регулируют ПТГ, антагонистичный ему по эффектам тирокальцитонинн, гормональные формы витамина D , отчасти эстрогены.
a. ПТТ увеличивает содержание кальция в сыворотке, усиливая его вымывание из костей и канальцевую реабсорбцию в почках. ПТГ также стимулирует образование кальцитриола.
б. Кальцитриол усиливает всасывание кальция и фосфатов в кишечнике. Образование кальцитриола стимулируют ПТГ и гипофосфатемия, подавляет - гиперфосфатемия.
в. Кальцитонин подавляет резорбцию костей и усиливает экскрецию кальция в почках; его действие на сывороточный кальций противоположно таковому ПТГ.
г. Нарушения метаболизма витамина D, кальцитонина, ПТГ оказывают глубокое влияние на множество систем, в т.ч. на костный скелет и почки.
Г. Обмен фосфатов. Фактически все функции организма осуществляются за счёт макроэргических фосфатных связей АТФ. Кроме того, фосфат - важный анион и буфер внутриклеточной жидкости. Важно и его значение в почечной экскреции иона водорода.

1. Гомеостаз фосфата - равновесие между поступлением и выведением фосфата (внеиний баланс), а также поддержание нормального распределения фосфата в организме (внутренний баланс).
a. Внешний баланс фосфата. Поступление фосфата в норме - 1200 мг/день. Нормальный уровень экскреции фосфата - 1200 мг/день (800 мг с мочой и 400 мг с калом). ЖКТ - пассивный компонент внешнего баланса фосфата, в то время как экскреция фосфата в почках тщательно контролируется.
(1) В норме 90% фильтрующегося фосфата реабсорбируется в проксимальных канальцах, очень малая часть реабсорбируется дистальнее. Основной регулятор реабсорбции фосфата в почках - ПТГ.
(a) Высокий уровень ПТГ ингибирует реабсорбцию фосфата.
(б) Низкий уровень ПТГ стимулирует реабсорбцию фосфата.
(2) На ПТГ-независимую регуляцию реабсорбции фосфата влияют содержание фосфата в пище, кальцитонин, тиреоидные гормоны и гормон роста.
б. Внутренний баланс фосфата. Уровень внутриклеточного фосфата - 200-300 мг\%, внеклеточного - $3-4$ мг\%. Повышение содержания инсулина, дисбаланс ионов водорода и внутриклеточные метаболические нарушения изменяют распределение фосфата в организме.
2. Гипофосфатемия может развиться в результате внепочечных или почечных потерь фосфата.

а. Внепочечные причины

(1) Дефицит в пище и потери через желудочно-кишечный тракт
(a) Неадекватное поступление с пищей.
(б) Злоупотребление антацидами. Большие количества алюминий- или магнийсодержащих антацидов связывают фосфат, увеличивая его потери через ЖКТ.
(в) Голодание. При голодании распад клеток приводит к высвобождению фосфата во внеклеточную жидкость.
(2) Перераспределение фосфата в организме
(a) Гликолиз. Любое состояние, сочетающееся с усилением гликолиза в клетках, вызывает накопление органических фосфатных соединений в виде

фосфорилированных углеводных групп при одновременном уменьшении внутриклеточного органического фосфата.
(б) Респираторный алкалоз. Гипервентиляция сочетается с уменьшением фосфата в сыворотке из-за повышенного потребления фосфата клетками.
(в) Сепсис. Гипофосфатемия - признанный спутник грамотрицательного сепсиса.
(г) Адреналин стимулирует потребление фосфата клетками, что может привести к гипофосфатемии.

б. Почечные причины

(1) Избыток ПТГ. Любое состояние, сочетающееся с повышенным уровнем ПТГ, может вызвать потерю фосфата почками.
(2) Ряд заболеваний (например, цистиноз, отравления тяжёлыми металлами, множественная миелома, СКВ) может сочетаться с генерализованными дефектами проксимальных почечных канальцев и потерей фосфата почками.
(3) Специфические дефекты транспорта фосфата обозначены как гипофосфатемический витамин D-резистентный рахит. При этом снижение транспорта фосфата в проксимальных канальцах нефронов вызывает чрезмерную почечную потерю фосфата.
(4) Глюкозурия. Фосфат и глюкоза конкурируют за транспорт в проксимальном канальце нефрона. Все глюкозурические состояния сопровождаются избыточными потерями фосфата почками.
3. Гиперфосфатемия развивается при ряде состояний.
a. Почечная недостаточность часто сочетается с гиперфосфатемией.
б. Синдромы лизиса клеток
(1) Острый некроз скелетной мускулатуры. Острый распад мышц любой этиологии сопровождается высвобождением клеточного фосфата и гиперфосфатемией.
(2) Синдром распада опухоли. Злокачественные заболевания, сочетающиеся с высокой чувствительностью к химиотерапии или лучевой терапии, сопровождаются быстрой гибелью клеток. Этот синдром может приводить к массивному высвобождению фосфата и других внутриклеточных веществ во внеклеточную жидкость.
в. Гипопаратиреоз. Так как уровень ПТГ определяет реабсорбцию фосфата в почках, любое состояние, сочетающееся с недостаточностью паращитовидных желёз или с недостаточным ответом на ПТГ, может характеризоваться гиперфосфатемией.
Д. Витамины D - жирорастворимые стероиды, необходимые для нормального развития костей и зубов, всасывания кальция и фосфатов в кишечнике. В организме существуют ядерные рецепторы, связывающие активную форму витамина D_{3} - кальцитриол. Bсе остальные соединения этой группы подвергаются различным модификациям для превращения в активную форму.

1. Номенклатура и источники (рис. 9-18)
a. Провитамин $\mathbf{D}_{3}-(3 \beta) \cdot 7$-дегидрохолестерин, $\mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}$, мол. масса 384,65 ; обнаружен у млекопитающих, в эпидермисе под влиянием ультрафиолета превращается в витамин D_{3}.
 лестерин, холекальциферол), антирахитическое средство животного происхождения (печень рыб и млекопитающих, мозг, яичный желток), образуется в коже в результате фотолиза из провитамина D_{3}.
в. Кальцидиол, 25 -гидроксихолекальциферол, 25 -гидроксивитамин $\mathrm{D}_{3}, \mathrm{C}_{27} \mathrm{H}_{44} \mathrm{O}_{2}$, мол. масса 400,65 ; промежуточный продукт биологического превращения витамина D_{3} в кальцитриол, образуется в печени при гидроксилировании по ${ }^{25} \mathrm{C}$.

$\mathbf{l} \alpha$-Гидроксилаза кальцидиола - монооксигеназа, превращающая при участии O_{2} и НАДФН кальцидиол в кальцитриол, недостаточность фермента (ρ) приводит к дефициту витамина D и витамин D -зависимому рахиту.
г. Кальцитриол, $1 \alpha, 25$-дигидроксивитамин $D_{3}, 1 \alpha, 25$-дигидроксихолекальциферол, 9,10 -секохолестатриен-5,7,10(19)-триол-1 $\alpha, 3 \beta, 25,1,25(\mathrm{OH})_{2} \mathrm{D}_{3}$, продукт второго этапа биологического превращения витамина D_{3} в его активную форму. Эффекты выраженнее, чем у кальцидиола.
д. Провитамин D_{2} - эргостерол, витамин D растительного происхождения.
е. Витамин D_{2} (эргокальциферол, кальциферол), $\mathrm{C}_{28} \mathrm{H}_{44} \mathrm{O}$, мол. масса 396,66 , активированный эргостерол (образуется при облучении эргостерола ультрафиолетом), антирахитическое средство. В течение многих лет эргокальциферол был стандартным препаратом витамина D. Для полного эффекта необходимо превращение в кальцитриол (стимулятор - ПТГ).
ж. Рецепторы витамина $\mathbf{D}_{\mathbf{3}}$ - ядерные рецепторы, факторы транскрипции, специфически связывают кальцитриол.
Дефекты рецепторов приводят к развитию ряда форм резистентного к витамину D рахита.
2. Суточная потребность. Дети - 10 мкг холекальциферола (400 ME), взрослые после 25 лет - вдвое меньше.
a. Гиповитаминоз. Недостаточность витамина D приводит к развитию рахита (у детей), остеомаляции, остеопорозу, остеодистрофии.
б. Гипервитаминоз вызывает развитие токсического синдрома (анорексия, рвота, диарея), кальцификацию мягких тканей (сердце, сосуды, почка, лёгкие).
E. Рахит характеризуется костными нарушениями, вызванными недостаточной минерализацией остеоида (формирующийся межклеточный матрикс кости). Не полностью минерализованная костная ткань дефектна, при росте перестраивающаяся кость изгибается и скручивается. Варианты рахита связаны с недостаточностью витамина D в результате сниженного его поступления и всасывания или дефектов метаболизма, либо вследствие недостаточного количества кальция и фосфатов для минерализации костей.
3. Алиментарный рахит. Недостаточное поступление витамина D приводит к пониженному всасыванию калыция в кишечнике. Гипокальциемия стимулирует секрецию ПТГ, вызывающего повышенное вымывание кальция из костей и уменышенную реабсорбцию фосфатов в почечных канальцах.
4. Нарушения метаболизма витамина D
a. Витамин D-зависимый рахит обусловлен недостаточностью $l \alpha$-гидроксилазы, превращающей кальцидиол в кальцитриол.
б. Хроническая болезнь почек. Один из факторов развития почечной остеодистрофии (сочетание остеопороза, фиброзного остеита, рахита, хронической почечной недостаточности) - сниженная активность 1α-гидроксилазы в почках.
в. Хронические заболевания печени (например, атрезия жёлчных ходов и холестазы другой этиологии) могут приводить к рахиту из-за ухудшения всасывания в кишечнике жирорастворимых витаминов D или дефицита 25 -гидроксилирования в печени.
r. Длительная противосудорожная терапия. Фенобарбитал и фенитоин вызывают ускорение метаболизма кальцидиола и могут привести к рахиту.

3. Недостаточность минералов

a. X-сцепленная гипофосфатемия (семейная гипофосфатемия). Первичное расстройство - дефект почечных канальцев, приводящий к потере фосфатов.
б. Рахит недоношенных (метаболическое заболевание костей недоношенных младенцев). Недоношенные грудные дети имеют пониженную минерализованность костей, т.к. кальций и фосфор поступают в организм плода лишь в последнем триместре беременности.

VI. НААПОЧЕЧНИК

Надпочечники (рис. 9.19) - парные органы, расположенные ретроперитонеально у верхних полюсов почки на уровне Th_{12} и L_{1}; масса надпочечника - примерно по 4 г. Фактически это две железы: кора (на долю коры приходится около 80% массы железы) и мозговая часть. Кора надпочечников синтезирует стероидные гормоны (минералокортикоиды, глюкокортикоиды и андрогены), хромаффинная ткань мозговой части - катехоловые амины.
А. Развитие. На 6 -й неделе внутриутробного развития крупные мезодермальные клетки целомического эпителия образуют скопление на краниальном конце мезонефроса (см. главу 14 А 2). Вскоре формируется сосудистый полюс - место проникновения в центральную часть железы мигрирующих из нервного гребня будущих хромаффинных клеток мозгового вещества. На 8 -й неделе мезодермальные клетки начинают интенсивно размножаться, и формируется две зоны коры: наружная - дефинитивная и эмбриональная (фетальная), расположенная на границе с мозговым веществом.

1. Фетальная кора. Клетки фетальной зоны коры надпочечника у плода крупные, с ацидофильной цитоплазмой и большим бледным ядром. На $10-20$-й неделе фетальная кора быстро растёт, к 30 -й неделе объём этой зоны увеличивается вдвое. В плодном периоде на долю фетальной зоны приходится большая часть коры надпочечника. Незадолго до рождения начинается дегенерация этой зоны, и к концу первого года жизни фетальная кора полностью исчезает.
Функция. Фетальная кора синтезирует преимущественно глюкокортикоид кортизол и дегидроэпиандростерон, преобразуемый в печени плода в 16α-производные, из которых в плаценте образуется большая часть эстрогенов материнского организма (эстриол, эстрадиол и эстрон).
2. Дефинитивная кора Клетки дефинитивной зоны мелкие, имеют базофильную цитоплазму и плотное ядро. К 30 -й неделе объём дефинитивной зоны значительно увеличивается. В течение первого года жизни в дефинитивной коре различимы клубочковая, пучковая и сетчатая зоны, дифференцировка

Рис. 9-19. Надпочечник. Непосредственно под капсулой в составе корковой части находится клубочковая зона. Она состоит из узких и более мелких по сравнению с другими зонами клеток. Крупные многоугольные клетки образуют параллельные тяжи пучковой зоны. Правильный ход тяжей нарушается в сетчатой зоне корковой части надпочечника. Мозговая часть представлена переплетающимися тяжами крупных хромаффинных клеток. К тяжам прилегают синусоидные кровеносные капилляры с широким просветом [из Junqueira LC, Carneim J, 1991]

корковой части надпочечника завершается к третьему году жизни. В дальнейшем кора продолжает увеличиваться в объёме (особенно мощно при половом созревании), достигая окончательных размеров к 20 годам.
3. Мозговая часть. К 30 -й неделе объём мозгового вещества увеличивается в 4 раза. В дальнейшем число хромаффинных клеток возрастает вплоть до завершения полового развития.
Функция. В плодном периоде хромаффинные клетки весьма чувствительны к малейшим изменениям гомеостаза (например, к изменениям pO_{2}), отвечая на них выбросом катехоловых аминов. При этом выброс адреналина возрастает в 2 раза, а норадреналина - в 3 раза.
Б. Регенерация. Полагают, что клетки коры и мозговой части железы способны поддерживать свою численность как путём их пролиферации, так и за счёт камбиального резерва.

1. Kора. Считают, что непосредственно под капсулой органа находятся эпителиальные камбиальные клетки, постоянно дифференцирующиеся в эндокринные клетки коры.
АКТГ стимулирует пролиферацию камбиального резерва. Іри хроническом избытке АКТГ развивается гиперплазия коры надпочечников с избыточной секрецией её стероидных гормонов.
2. Мозговая часть. Вероятно, часть мигрировавших сюда клеток нервного гребня сохраняется в виде камбиального резерва.
Феохромоцитома. Эти малодифферениированные клетки - источник развития опухолей, продуцирующих избыточные количества катехоловых аминов.
B. Кровоснабжение железы осуществляется из трёх источников: верхней надпочечниковой артерии (ветвь нижней диафрагмальной артерии), средней надпочечниковой артерии (отходит от аорты), нижней надпочечниковой артерии (ветвь почечной артерии). Кровоснабжение органа весьма значительно.
Венозный дренаж коры происходит через синусоиды мозговой части. Это обстоятельство объясняет сочетанное вовлечение органа в развитие стрессовых ситуаций (адаптационный синдром, по Селье), т.к. глюкокортикоиды коры стимулируют секрецию адреналина из хромаффинных клеток.
Г. Иннервация. Мозговая часть органа имеет множество преганглионарных нервных волокон симпатического отдела нервной системы, хромаффинные клетки расценивают как постганглионарное звено двигательной вегетативной иннервации.

Д. Кора надпочечника

1. Строение (рис. 9-19). Железа окружена капсулой из плотной волокнистой соединительной ткани, от которой в толщу органа местами отходят соединительнотканные перегородки.
a. Строма состоит из поддерживающей эндокринные клетки рыхлой волокнистой соединительной ткани, содержащей огромное количество кровеносных капилляров с фенестрированным эндотелием.
б. Паренхима - совокупность эпителиальных тяжей, имеющих различную ориентацию на разном расстоянии от капсулы надпочечника. Это обстоятельство, а также характер гормонального стероидогенеза позволяют выделить в коре клубочковую, пучковую и сетчатую зоны.
(1) Пучковая зона (75% толщины коры). Тяжи эндокринных клеток и находящиеся между ними кровеносные капилляры расположены параллельно друг другу (в виде пучков). Здесь синтезируются глюкокортикоиды (преимущественно кортизол и кортизон [дегидрокортикостерон]), а также андрогены. Синтез глюкокортикоидов регулирует тропный гормон аденогипофиза - АКТГ. Клетки выглядят как вакуолизированные (рис. 9-20 А), поэтому их называют спонгиоциты; содержат округлые митохондрин с кристами в виде трубочек и пузырьков, разветвлённую гладкую эндоплазматическую сеть, элементы гранулярной эндоплазматической сети, лизосомы, многочисленные липидные включения и пигментные гранулы, содержащие липофусцин.

Вакуолизация клеток на гистологических препаратах отражает присутствие в цитоплазме спонгиоцитов значительного числа липидных капель (содержат преимущественно эфиры холестерина), вымываемых при подготовке препарата.
(2) Клубочковая зона (15% толщины коры). Пучки эндокринных клеток подворачиваются под капсулу и на срезе имеют вид клубочков. Здесь синтезируются минералокортикоиды (главным образом, альдостерон). Стимулятор синтеза альдостерона - ангиотензин II и в незначительной степени - АКТГ. Клетки (рис. 9-20 Б) имеют плотное округлое ядро с одним или двумя ядрышками, развитую гладкую эндоплазматическую сеть, некрупные митохондрии с пластинчатыми кристами, рибосомы, хорошо развитый комплекс Го́льджи и небольшое количество мелких липидных включений.
Минералокортикоды синтезируются только в клубочковой зоне.
(3) Сетчатая зона (10% толщины коры). В наиболее глубоких частях коры тяжи эндокринных клеток переплетаются, образуя подобие сети. В сетчатой зоне синтезируются глюкокортикоиды и стероидные гормоны типа андрогенов (дегидроэпиандростерон и андростендион). Тропный гормон - AKTГ. Гонадотропные гормоны гипофиза не влияют на секрецию гормонов в сетчатой зоне. В отличие от спонгиоцитов, клетки этой зоны содержат меньше липидных включений, но имеют крупные липофусциновые гранулы. Ядра некоторых клеток пикнотизированы.
Липофусциновые грануды содержат лизосомальную кислую фосфатазу и рассматриваются как деградирующие лизосомы.
2. Стероидогенез гормонов коры надпочечника, а также стероидных гормонов половой сферы - сложный процесс (из железы выделено не менее 50 стероидов), по-разному происходящий в отдельных зон̈ах коры. Стероидные гормоны, их промежуточные продукты, а также фармакологические аналоги гормонов синтезируются на базе холестерина. Процессы стероидогенеза обеспечивают ферменты, локализованные в митохондриях и гладкой эндоплазматической сети. Все стероидные гормоны построены на основе 17 . углеродной структуры - циклопентанпергидрофенантрена.
a. Циклопентанпергидрофенантрен (рис. 9-21) содержит 4 кольца (А, B, C, D).
(1) Нумерация углеродных атомов указана на рисунке 9-21.
(2) Дополнительные атомы углерода присоединяются по положенням $10\left(\mathrm{C}_{19}\right), 13\left(\mathrm{C}_{18}\right)$ и 17 $\left(C_{20}\right.$ и $\left.C_{21}\right)$.
(3) Асимметричные атомы углерода $-3,5,8-10,13,14,17$ - определяют возможность стереоизомерии.
(4) Угловые метильные группы $\mathrm{C}-18$ и $\mathrm{C}-19$ расположены над плоскостью колец, их используют для определения ориентации стереоизомеров.
(a) цис и β - замещения в плоскости колец.
(6) транс и α - замещения, расположенные сзади плоскости колец.
(5) Двойные связи указывают по номеру предшествующего атома углерода (например, Δ^{3}, Δ^{4}).
(6) Названия стероидов определяют по количеству угловых метильных групп.
(a) Эстран - одна угловая группа, 18 атомов углерода.
(6) Андростан - две группы, 19 атомов углерода.
(в) Прегнан - две группы + боковая цепь при С-17, 21 атом углерода.
(7) Дополняющие название гормона приставки и суффиксы
(a) Префиксы
(i) гидрокси и дигидрокси. Указывает на спирты.
(ii) оксо (кето). Указывает на кетоны.
(iii) дезокси. Отсутствие гидроксила.
(iv) изо или эпи. Изомерия по связям $\mathrm{C}-\mathrm{C}, \mathrm{C}-\mathrm{OH}, \mathrm{C}-\mathrm{H}$.
(v) дегидро. Указывает на утрату двух атомов водорода с образованием двойной связи.
(vi) дигидро. По месту двойной связи присоединено два атома водорода.
(vii) алло. Транс-конфигурация колец А и В.

Рис. 9-20. Эндокринные клетки коры надпочечника. \mathbf{A} - клетка пучковой зоны, вырабатывающая глюкокортикоиды и андрогены. Клетку называют спонгиоцитом, т.к. она имеет пенистый вид из-за множества липидных капель в цитоплазме; содержит округлые митохондрии с кристами в виде трубочек и пузырьков, разветвлённую гладкую эндоплазматическую сеть. Б - клетка клубочковой зоны, вырабатывающая альдостерон. Присутствуют развитая гладкая эндоплазматическая сеть, некрупные митохондрии с пластинчатыми кристами и небольшое количество мелких липидных включений [из Lentz TL, 1974]

(6) Суффиксы

(i) ол, диол. Указывает на спирты.
(ii) он. Указывает на кетон.
б. Холестерол [холестерин, (3ß)-холест-5-ен-3-ол, $\mathrm{C}_{27} \mathrm{H}_{46} \mathrm{O}$, мол. масса 386,66 (рис. 9-21)] поступает в эндокринные клетки из крови и аккумулируется в виде его эфиров в липидных каплях. При стимуляции АКТГ эстераза отщепляет эфирную группировку, и холестерол поступает в митохондрии, где цитохром P-450 (20,22-десмолаза), отщепляя боковую цепь, превращает его в прегненолон.

Циклопентанпергидрофенантрен

Рис. 9-21. Начальные этапы синтеза стерондных гормонов

Прегненолон
в. Прегненолон - 3β-гидрокси-5-прегнен-20-он (рис. 9-21). Это соединение - ключевое для синтеза всех стероидных гормонов (рис. 9-22, 9-23, 9-24). Из прегненолона образуются 17 -гидроксипрегненолон (реакцию катализирует 17α-гидроксилаза) и далее - дегидроэпиандростерон (реакцию катализирует C_{17-20}-лиаза [17,20-десмолаза]), а также прогестерон (реакции катализируют система 3β-гидроксистероид дегидрогеназы и $\Delta^{5.4}$-изомераза).
(1) 17α-Гидроксилаза локализована в гладкой эндоплазматической сети.

Недостаточность 17α-гидроксилазы приводит к гиперсекреции дезоксикортикостерона с последующей гипертензией. Поскольку фермент необходим и для синтеза половых стероидных гормонов, наряду с дефицитом эстрогенов наблюдается и дефицит андрогенов. Такие нарушения вызывают развитие гермафродитоподобных гениталий у мальчиков и первичную аменорею у женщин.
(2) C $_{17-20}$-лиаза (17,20 -десмолаза) - митохондриальный фермент.
(3) $\mathbf{3} \beta$-Гидроксистероид дегидрогеназа и $\Delta^{5,4}$-изомераза локализованы в гладкой эндоплазматической сети.
г. Дегидроэпиандростерон (3β-гидрокси-5-андростен-17-он) - предшественник андрогенов, его синтез происходит в пучковой и сетчатой зонах. В дальнейшем из дегидроэпиандростерона в клетках Ле́йдига яичка образуются андростендион и тестостерон.
д. Ірогестерон (4 -прегнен-3,20-дион) в надпочечнике - практически полностью промежуточный продукт. Гидроксилирование прогестерона и образующегося из него 17-гидроксипрогестерона (реакцию катализирует 21 -гидроксилаза и далее 11β-гидроксилаза) приводит к образованию кортизола и кортикостерона. Из 17 -гидроксипрогестерона формируется слабый андроген андростендион (4-андростен-3,17-дион).

Рис. 9-22. Упрощённая схема стероидогенеза в коре надпочечника, яичнике и яичках. 20,22-D - 20,22-десмолаза, 17,20-D - 17,20-десмолаза, 17-OHase - 17-гидроксилаза, 21-OHase 21 -гидроксилаза, 11-OHase - 11 -гидроксилаза, 3β-HSD - система 3β-гидроксистероид дегидрогеназа / $\Delta^{5.4}$-изомераза, 17-OR - 17 -оксидоредуктаза (по Педиатрия, М.: ГЭОТАР, 1996)

17 α-Гидроксипрогестерон

Андростендион

Тестостерон

Прогестерон

11-Дезоксикортикостерон

Кортикостерон

Альдостерон

Рис. 9-23. Пути синтеза стероидных гормонов надпочечника
(1) 21-Гидроксилаза локализована в гладкой эндоплазматической сети. Врождённая гиперплазия коры надпочечника. Наиболее частая её причина ($>90 \%$) - недостаточность 21 -гидроксилазы (все формы - р). Дефицит кортизола стимулирует выработку АКТГ, что приводит к гиперплазии коры надпочечников и избыточной продукции андрогенов. Подобные нарушения при развитии плода часто вызывают изменения гениталий у девочек. При избытке андрогенов в постнатальном периоде происходит вирилизация в препубертатном возрасте и у молодых женщин. У младенцев мужского пола следствие избытка андрогенов во время развития плода - макрогенитосомия. В постнатальном периоде наступает преждевременное половое созревание. При тяжёлой (натрий-дефнцитной) форме недостаточности - наряду с уменьшением синтеза кортизола - снижена продукция альдостерона; дефицит минералокортикоидов приводит к гипонатриемии, гиперкалиемии, дегидратации и гипотензии.
(2) 11β-Гидроксилаза - фермент митохондрий. При недостаточности фермента развивается гиперплазия коры надпочечника (5% случаев).
е. Кортикостерон ($11 \beta, 21$-дигидрокси-4-прегнен-3,20-дион, соединение В [по Ке́ндалиу]) субстрат для синтеза альдостерона (присутствующие только в клетках клубочковой

зоны 18 -гидроксилаза и 18 -гидроксистероид-дегидрогеназа катализируют превращения кортикостерона).
Врождённые дефекты митохондриальной 18 -гидроксилазы приводят к развитию недостаточности альдостерона (р).

3. Гормоны (рис. 9-24).

a. Глюкокортикоиды

(1) Основной глюкокортикоид, секретируемый надпочечниками, - кортизол; на его долю приходится 80%. Остальные 20% - кортизон, кортикостерон, 11 -дезоксикортизол и 11 -дезоксикортикостерон.
(a) Кортизол (17-гидрокортизон, гидрокортизон) - $11 \beta, 17 \alpha, 21$-тригидрокси-4-прегнен3,20 -дион, соединение $\mathrm{F}, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{5}$, мол. масса 362,47 (рис, 9-24).
(б) Кортизон - $17 \alpha, 21$-дигидрокси-4-прегнен-3,11,20-трион, соединение E (рис. 9-24) имеет крайне слабую активность.
(в) 11-Дезоксикортизол - 17,21-дигидрокси-4-прегнен-3,20-дион, соединение S (рис. 9-23).
(г) 11-Дезоксикортикостерон - 21 -гидрокси-4-пегнен-3,20-дион, соединение В (рис. 9-23) преобладают минералокортикоидные эффекты.
(д) Кортикостерон (см. VI Д 2 е, рис. 9-23).
(e) Дексаметазон - $11 \beta, 16 \alpha$)-9-фтор-11,17,21-тригидрокси-16-метилпрегна-1,4-диен-3,20дион, $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{FO}_{5}$, мол. масса 392,47 , как и преднизон, преднизолон, метилпреднизолон, синтетический препарат (рис. 9-24).
(2) АКТГ - основной регулятор синтеза глюкокортикоидов. Для синтеза и секреции кортиколиберина, АКТГ и кортизола характерна выраженная суточная периодичность. При нормальном ритме сна увеличение секреции кортизола наступает после засыпания и достигает максимума при пробуждении.
(3) Метаболизм
(a) Связанные и свободные глюкокортикоиды. Глюкокортикоиды находятся в крови в виде восстановленных ди- и тетрагидро- производных. Более 90% глюкокортикоидов циркулирует в крови в связи с белками - альбумином и связывающим кортикоиды глобулином (транскортин, ген CBG, 122500, 14q32.1). Около 8% кортизола плазмы - активная фракция.
(б) Время циркуляции определяется прочностью связывания с транскортином (время полужизни кортизола - до 2 часов, кортикостерона - менее 1 часа).
(в) Водорастворимые формы. Модификация липофильного кортизола осуществляется преимущественно в печени, формируются конъюгаты с глюкуронидом и сульфатом. Модифицированные глюкокортикоиды - водорастворимые соединения, способные к экскреции.
(r) Экскреция. Конъюгированные формы глюкокортикоидов секретируются с жёлчью в ЖКТ, из них 20% теряется с калом, 80% всасывается в кишечнике. Из крови 70% глюкокортикоидов экскретируется с мочой.
(4) Функции глюкокортикоидов разнообразны - от регуляции метаболизма до модификации иммунного и воспалительного ответов.
(a) Глюконеогенез. Глюкокортиконды стимулируют образование глюкозы в печени путём увеличения скорости глюконеогенеза (синтез ключевых ферментов) и стимуляции освобождения аминокислот (субстратов глюконеогенеза) в мышцах.
(б) Синтез гликогена усиливается за счёт активации гликогенсинтетазы.
(в) Липидный обмен
(i) Липолиз усиливается в конечностях.
(ii) Липогенез усиливается в других частях тела (туловище и лицо).
(iii) Эти дифференциальные эффекты придают больным (например, при синдроме Ку́шинга) характерный внешний вид.

(r) Белки и нуклеиновые кислоты
(i) Анаболический эффект в печени.
(ii) Катаболический эффект в других органах.
(д) Иммунная система. В высоких дозах глюкокортикоиды выступают как иммунодепрессанты (применяют для предупреждения отторжения трансплантированных органов, при myasthenia gravis).
(e) Воспаление. Глюкокортикоиды имеют выраженный противовоспалительный эффект.
(ж) Синтез коллагена. Глюкокортикоиды при длительном применении ингибируют синтетическую активность фибробластов и остеобластов, в результате развиваются истончение кожи и остеопороз.
(з) Скелетные мышцы. Длительное применение глюкокортикоидов поддерживает катаболизм мышц, что приводит к их атрофии и мышечной слабости.
(и) Воздухоносные пути. Введение глюкокортикоидов может уменьшить отёк слизистой оболочки.
(5) Гиперкортицизм (синдром Ку́шинга) возникает в результате значительного повышения содержания глюкокортикоидов в крови.
(a) Причины
(i) Двусторонняя гиперплазия коры надпочечников (болезнь Ице́нкоКу́шинга) - наиболее частая причина развития синдрома.
(ii) Эктопический синтез АКТГ опухолями (например, овсяно-клеточная карцинома лёгкого, карцинома поджелудочной железы) также вызывает гиперплазию надпочечников и синдром Ку́шинга.
(iii) Ятрогенный синдром Ку́шинга обычно развивается у больных, длительное время получающих глюкокортикоиды по поводу бронхиальной астмы, артрита и других заболеваний.
(6) Клиника
(i) Ожирение обусловлено влиянием избыточной секреции кортизола на распределение жира. Жир накапливается на лице, шее и туловище, в то время как конечности остаются тонкими.
(ii) Кушингоид. Лунообразное лицо, бизоний гор6 (жировая подушка в области шеи) и надключичные жировые подушки придают больным характерную кушингоидную внешность.
(iii) Гипертензия возникает в результате сосудистых и других эффектов кортизола, включая задержку натрия.
(iv) Симптомы избытка андрогенов (например, олигоменорея, гирсутизм и а́кне).
(v) Пурпурные полосы живота (тонкая дряблая кожа растягивается подлежащим жиром).
(vi) Атрофии и слабость мышц возникают из-за катаболических эффектов кортизола на мышечные белки.
(vii) Остеопороз обусловлен повышенным метаболизмом кости и ингибирующим влиянием кортизола на синтез коллагена и всасывание кальция.
(viii) Предрасположенность к возникновению синяков связывают с повышенной ломкостью капилляров.
(ix) Психозы (особенно депрессия) - частый результат избытка кортизола.
(x) У детей возможна выраженная задержка роста.
(6) Гипокортицизм. Пониженная секреция адренокортикондов может быть вызвана первичной надпочечниковой недостаточностью (болезнь Аддисона) или отсутствием стимуляции коры надпочечников АКТГ (вторичная надпочечниковая недостаточность).

Аддисонова болезнь - первичная недостаточность надпочечников. Атрофия коры надпочечников, обусловленная аутоиммунным процессом, - наиболее частая причина.
(7) Рецептор глюкокортикоидов (ген $G C C R, 138040,5 q 31$-q32) - фактор транскрипции, полипептид с $M_{t} 94$ кД из семейства онкогенов erb- A. По аутосомнодоминантному типу наследуется несколько мутаций, приводящих к развитию нечувствительности мишеней к глюкокортикоидам.

б. Минералокортикоиды

(1) Альдостерон ($11 \beta, 21$-дигидрокси-3,20-диоксо-4-прегнен-18-аль, мол. масса 360,45) основной минералокортикоид (рис. 9-24).
(2) Другие стероиды надпочечника, расцениваемые как глюкокортикоиды, имеют и минералокортикоидную активность, хотя - сравнительно с альдостероном - их суммарный вклад мал.
(а) Корти зол (рис. 9-24).
(б) 11-Дезоксикортизол (рис. 9-23).
(в) 11-Дезоксикортикостерон (рис. 9-23).
(r) Кортикостерон (см. VI Д 2 е, рис. 9-23).
(3) Регуляторы синтеза
(a) Ангиотензин II - компонент системы *ренин-ангиотензины» - главный регулятор синтеза и секреции альдостерона. Этот пептид стимулирует выброс альдостерона.
(б) Натриуретические факторы (см. главу 10 Б 2 б (3)) ингибируют синтез альдостерона.
(в) Na^{+}. Эффекты гипо- и гипернатриемии реализуются через систему «ренинангиотензины».
(г) \mathbf{K}^{+}. Эффекты ионов калия не зависят от содержания в крови Na^{+}и ангиотензина II.
(i) Гиперкалиемия стимулирует секрецию альдостерона.
(ii) Гипокалиемия тормозит секрецию мннералокортикоидов.
(д) Простагландины
(i) \mathbf{E}_{1} и \mathbf{E}_{2} стимулируют синтез альдостерона.
(ii) $\mathbf{F}_{1 \alpha}$ и $\mathbf{F}_{2 a}$ тормоззт секрецию минералокортикоидов.
(e) Травмы и стрессовые состояния увеличивают секрецию альдостерона.
(4) Метаболизм. Альдостерон практически не связывается с белками плазмы крови, по этой причине время его циркуляции в крови (время полужизни) не превышает 15 минут. Альдостерон из крови удаляется печенью, где он трансформируется в экскретируемый почками тетрагидроальдостерон-3-глюкуронид.
(5) Функция минералокортикоидов - поддержание баланса электролитов жидкостей организма, осуществляется посредством влияния на реабсорбцию ионов в почечных канальцах.
(a) Na^{+}. Альдостерон увеличивает реабсорбцию ионов натрия.

Задержка натрия приводит к увеличению содержания воды в организме и повышению АД.
(б) \mathbf{K}^{+}. Альдостерон увеличивает экскрецию ионов калия.

Потеря калия вызывает гипокалиемию.
(в) $\mathbf{C l}^{-}, \mathbf{H C O}_{\mathbf{3}}^{-}, \mathbf{H}^{+}$. Альдостерон увеличивает реабсорбцию хлора, бикарбоната и почечную экскрецию ионов водорода.
(6) Рецептор альдостерона (ген $M C R, 264350,4 q 31.1$) - внутриклеточный полипептид с M $_{\text {r }} 107$ кД, связывает альдостерон (также глюкокортикоиды) и активирует

транскрипцию генов. Дефекть рецептора ведут к развитию псевдогипоальдостеронизма (задержка калия, потеря натрия, гипертензия при нормальной или даже повышенной секреции альдостерона).
(7) Альдостеронизм (гиперальдостеронизм) - гиперсекреция альдостерона.
(a) Причины: аденома или двусторонняя гиперплазия коры надпочечников, сердечная недостаточность, нефроз, вызванное диуретиками снижение объёма циркулирующей крови.
(б) Задержка натрия вызывает повышение АД.
(в) Потеря калия вызывает гипокалиемию, мышечную слабость, парестезии и тетанию (в тяжёлых случаях).
(8) Гипоальдостеронизм - пониженная секреция альдостерона.
(a) Потеря натрия приводит к гиповолемии, снижению сердечного выброса и кровотока в почках, слабости, гипотензии.
(б) Задержка калия ведёт к гиперкалиемии и нарушениям сердечного ритма.
в. Андрогены. В коре надпочечников синтезируются дегидроэпиандростерон (см. VI д 2 в, рис. 15-1) и в меньшей степени андростендион (см. VI Д 2 д, рис. 9-23). Недостаточность ферментов стероидогенеза (11 -, 17- и 21 -гидроксилазы) приводит к вирилизации, преждевременному половому созреванию мальчиков [см. VI д 2 в (1), см. VI Д 2 д (1)].
E. Мозговая часть надпочечника. Эндокринную функцию выполняют происходящие из нервного гребня хромаффинные клетки. При активации симпатической нервной системы надпочечники выбрасывают в кровь катехоловые амины (адреналин и норадреналин). Катехоламины имеют широкий спектр эффектов (воздействие на гликогенолиз, липолиз, глюконеогенез, существенно влияние на сердечно-сосудистую систему). Вазоконстрикция, параметры сокращения сердечной мышцы и другие эффекты катехоловых аминов реализуются через α - и β-адренергические рецепторы на поверхности клеток-мишеней (ГМК, секреторные клетки, кардиомиоциты). Серьёзные клинические проблемы возникают при опухолях эндокринных клеток и их предшественников (нейробластома, феохромоцитома).

1. Строма. В нежном поддерживающем каркасе, состоящем из рыхлой волокнистой соединительной ткани, расположены многочисленные сосудистые полости - венозные синусы - вариант капилляров типа синусоидов. Их отличительная особенность - значительный диаметр просвета, достигающий десятков и сотен микрон.
2. Хромаффинные клетки (рис. 9-25) содержат гранулы с электроноплотным содержимым, которое с бихроматом калия даёт хромаффинную реакцию.
a. Локализация. Хромаффинные клетки - основной клеточный элемент мозговой части надпочечников и т.н. параганглиев, расположенных по ходу крупных артериальных стволов (например, каротидное тело). Мелкие скопления и одиночные хромаффинные клетки находят также в сердце, почках, симпатических ганглиях.
б. Цитология. Хромаффннные клетки содержат многочисленные митохондрии, выраженный комплекс Го́льджи, элементы гранулярной эндоплазматической сети, многочисленные электроноплотные гранулы, содержащие преимущественно норадреналин и/или адреналин (по этому признаку хромаффинные клетки подразделяют на две субпопуляции), а также АТФ, энкефалины и хромогранины.
(1) Адреналин-содержащие гранулы гомогенны.
(2) Норадреналин-содержащие гранулы характеризуются повышенной плотностью содержимого в центральной части и наличием светлого ободка по периферии под мембраной гранулы.
(3) Гранулы, дополнительно содержащие дофамин, появляются при культивировании хромаффинных клеток in vitro.

Рис. 9-25. Хромаффинная клетка. Характерны многочисленные электроноплотные гранулы с катехоламинами. Значительный объём клетки занимает крупное ядро. Клетка содержит митохондрии, выраженный комплекс Го́льджи, элементы гранулярной эндоплазматической сети [из Lentz TL, 1974]
в. Секреция гормонов из хромаффинных клеток происходит в результате стимулирующего влияния со стороны преганглионарных симпатических волокон.
3. Катехоловые амины синтезируются из тирозина по цепочке: тирозин (превращение тирозина катализирует тирозин гидроксилаза) \rightarrow ДОФА (ДОФА-декарбоксилаза) \rightarrow дофамин (дофамин- β-гидроксилаза) \rightarrow норадреналин (фенилэтаноламин- N-метилтрансфераза) \rightarrow адреналин.
а. Тирозин (см. рис. 9-15).

Тирозин гидроксилаза (ген $T H, 191290,11 p 15.5, ~ К Ф 1.14 .16 .2$).
б. ДОФА (рис. 9-26). Эта аминокислота выделена из Vicia faba L, активна, и применяется как антипаркинсоническое средство её L-форма - леводопа (L-ДОФА, леводофа, 3 -гидрокси- L-тирозин, L-дигидроксифенилаланин).
ДОФА-декарбоксилаза (ген $D D C, 107930,7 \mathrm{p11}, \mathrm{~K} \mathrm{\Phi} \mathrm{4.1.1.28)} \mathrm{участвует} \mathrm{в} \mathrm{синтезе} \mathrm{дофами-}$ на, а также серотонина (из 5 -гидрокситриптофана).
в. Дофамин - 4-(2-аминоэтил)пирокатехол (рис. 9-26).

Дофамин- β-гидроксилаза (ген $D B H, 223360,9 q 34$, KФ 1.14.17.1) секретируется из хромаффинных клетлк и норадренергических терминалей вместе с норадреналином, её определение в крови предложено для оценки симпатической активности.
г. Норадреналин - деметилированный предшественник адреналина (2-амино-1-(3,4-дигидроксифенил) этанол (рис. 9-26).
Фенилэтаноламин- N-метилтрансфераза (ген $P N M T, 171190,17 q 21$-q22, КФ 2.1.1.28).
д. Адреналин - l-1-(3,4-дигидроксифенил)-2-(метиламино)этанол - только гуморальный фактор, в синаптической передаче не участвует.

e. Деградация адреналина и других биогенных аминов происходит под влиянием моноаминооксидаз и катехол- O-метилтрансферазы. В результате образуются экскретируемые с мочой метанефрины и ванилилминдальная кислота - маркёры феохромоцитомы.
(1) Моноаминооксидазы (ген $М А О$, Хр11.23, 309850 и 309850 , КФ 1.4.3.4) - митохондриальные ферменты.
(a) Тип А - изоформа, присутствующая преимущественно в нервной ткани.
(б) Тип В - изоформа различных внутренних органов.
(2) Катехол-о-метилтрансфераза (ген СОМТ, 22q11.2, 116790, КФ 2.1.1.6) катализирует перенос метильной группы от S-аденозилметионина на катехоламины, а также на лекарственные препараты, применяемые при лечении гипертензии, бронхиальной астмы, болезни Паркинсона.
ж. Мутации генов вышеперечисленных ферментов приводят к блокированию синтеза соответствующих продуктов и накоплению субстратов.
Недостаточность катехоламинов мозговой части надпочечников редко приводит к развитию серьёзной патологии, но чрезмерная продукция адреналина (например, при феохромоцитоме) гарантирует развитие гипертензии.
4. Рецепторы катехоловых аминов - адренергические, дофамина - дофаминергические.
a. Адренорецепторы клеток-мишеней (включая синаптические) связывают норадреналин, адреналин и другие адренергические препараты, как активирующие (агонисты, адреномиметики), так и блокирующие (антагонисты, адреноблокаторы). Адренергические рецепторы подразделяют на $\boldsymbol{\alpha}$ - и $\boldsymbol{\beta}$-подтипы. Среди α - и β-адренорецепторов различают: $\alpha_{1}{ }^{-}$(например, постсинаптические в симпатическом отделе вегетативной нервной системы), α_{2}-(например, пресинаптические в симпатическом отделе вегетативной нервной системы и постсинаптические в головном мозге), $\boldsymbol{\beta}_{1}$ - (например, кардиомиоциты) и β_{2}-адренорецепторы.
Эффекты, опосредуемые разными адренергическими рецепторами.
Гликогенолиз. Усиление.
ГМК сосудов и мочеполовой системы. Сокращение.
α_{2}
ГМК ЖКТ. Расслабление.
Липолиз. Подавление.
Инсулин, ренин. Подавление секреции.
β_{1}
Кардиомиоциты. Увеличение силы сокращения.
Липолиз. Усиление.
β_{2}
Инсулин, глюкагон, ренин. Усиление секреции.
ГМК бронхов, ЖКТ, кровеносных сосудов, мочеполовой системы. Расслабление.
Печень. Усиление гликогенолиза и глюконеогенеза.
Мышцы. Усиление гликогенолиза.
б. Дофаминовые рецепторы, как и адренергические, относят к мембранным рецепторам, связанным с G-белком (активируют либо ингибируют аденилатциклазу).
5. Феохромоцитома - опухоль, состоящая из хромаффинных клеток, синтезирующих катехоламнны. Феохромоцитому обнаруживают примерно у 0,5\% больных гипертензией. Бо́льшая часть феохромоцитом - одиночные опухоли надпочечников, 10-20\% расположено вне надпочечников, $1-3 \%$ - в грудной клетке или в области шеи. Около 20% опухолей множественные, 10% - злокачественные.
a. Семейный (поли) эндокринный аденоматоз (СПЭА) типа II и III. При этих синдромах развивается, наряду с опухолями других эндокринных желёз, и феохромоцитома.
6. Маркёры. Определение катехоловых аминов, продуцируемых большинством опухолей, полезно для установления диагноза, контроля эффективности лечения и диагностики рецидивов. Особенно информативно определение суточной экскреции ванилилминдальной и гомованилиновой кислот.
6. Нейробластома - злокачественное новообразование, возникающее из клеток нервного гребня и их малодифференцированных клеточных потомков в составе ганглиев симпатического отдела нервной системы, мозгового вещества надпочечников и параганглиев.
Маркёры. Повышение содержания в крови нейроно-специфической енола́зы и амплификация протоонкогена N -myc в опухолевых клетках ассоцнированы с неблагоприятным прогнозом.

ПРЕПАРАТЫ

А. Гипофиз (рис. 9-8). На препарате видны три доли: передняя, промежуточная и задняя. Передняя доля. Между наполненными эритроцитами капиллярами находятся тяжи секреторных эпителиальных клеток:

хромофобные (нечётко контурированы, окрашены слабо);
хромофильные (ярко окрашенные клетки). Хромофильные клетки подразделяют на:
оксифильные (цитоплазма ярко-красного цвета);
базофильные (в цитоплазме обильная зернистость тёмно-синего цвета).
Промежуточная доля отделена от передней серповидной щелью. В ней видны эпителиальные клетки, часто образующие фолликулы, наполненные коллоидом.
Задняя доля построена из глиальных клеток (питуицитов), многочисленных капилляров и отростков нейросекреторных нейронов.
Б. Щитовидная железа (рис. 9-13) покрыта соединительнотканной капсулой, от которой внутрь органа отходят, разделяя его на дольки, многочисленные прослойки соединительной ткани, содержащей кровеносные сосуды. В более тонких прослойках соединительной ткани находятся широкие кровеносные капилляры, окружающие фолликулы щитовидной железы. Фолликулы имеют различные размеры, округлую или овоидную форму. Стенка фолликулов состоит из одного слоя эпителиальных клеток. В полости фолликула находится коллоид, который на препарате (как результат фиксации ткани) отходит от внутренней стенки фолликула. Между фолликулами располагаются различной величины и формы островки эпителиальных клеток (межфолликулярные клетки).
В. Околощитовидная железа (рис. 9-16) располагается на том же препарате, что и щитовидная железа. Паренхима железы состоит из тяжей эпителиальных клеток, между которыми находятся кровеносные капилляры.
Г. Надпочечник (рис. 9-19). Снаружи орган покрыт соединительнотканной капсулой.

Корковос вещество. В корковом веществе эпителиальные секреторные клетки формируют тяжи, между которыми находятся кровеносные капилляры. В зависимости от конфигурации и взаиморасположения тяжей различают следующие зоны коры:

клубочковая (glomerulosa); эпителиальные тяжи подворачиваются под капсулу в виде клубочков;
пучковая (fasciculata); эпителиальные тяжи идут параллельно друг другу. Протяжённость этой зоны сравнительно с другими наибольшая. Эта зона на препарате выглядит светлее других зон, т.к. липидные включения железистых клеток при подготовке среза растворились и цитоплазма клеток приобрела ячеистый вид;
сетчатая (reticularis) расположена на границе с мозговым веществом. Эпителиальные тяжи этой зоны анастомозируют.
Мозговое вещество состоит из светлых хромаффинных клеток, между которыми видны широкие венозные синусы.

АИTEPATYPA

Blanck O, Perrin C, Mziaut Het al Molecular cloning, cDNA analysis, and localization of a monomer of the N -acetylglucosamine-specific receptor of the thyroid, NAGR1, to chromosome 19p13.3-13.2. Genomics 21: 18-26, 1994
Hosoya M, Kimura C, Ogi K et al Structure of the human pituitary adenylate cyclase activating polypeptide (PACAP) gene. Biochim. Biophys. Acta 1129: 199-206, 1992
Levi-Montalcini \mathbf{R} The nerve growth factor thirty-five years later. Science 237: 1154-1162, 1987, maкoxe Nature Medicine, 1996, 2, №7: 743-744
Lin SC, Lin CR, Gukovsky I et al Molecular basis of the little mouse phenotype and implications for cell typespecific growth. Nature 364: 208-213, 1993
Seron-Ferre M, Jaffe RB The fetal adrenal gland. Ann. Rev. Physiol. 43: 141-162, 1981

ВОПРОСЫ

Пояснение. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждения, наиболее соответствующее каждому случаю.

1. Гормоны стероидной природы вырабатывают:
(A) хромаффинные клетки мозговой части надпочечников
(Б) ацидофильные клетки аденогипофиза
(B) фолликулярные клетки щитовидной железы
(Г) клетки пучковой зоны коры надпочечников
(Д) β-клетки островков Лангерханса
2. Нейросекреторные нейроны гипоталамуса синтезируют следующие гормоны, KPOME:
(A) вазопрессина
(Б) соматостатина
(B) люлиберина
(Г) лютропина
(Д) окситоцина
3. Для задней доли гипофиза верно всё, КРОМЕ:
(A) место поступления в кровь вазопрессина
(Б) место поступления в кровь окситоцина
(B) место поступления в кровь фоллитропина
(Г) содержнт отростчатые глиальные клетки - питуициты
(Д) содержит терминали аксонов, принадлежащих нейронам околожелудочкового ядра
4. Рилизинг-гормоны. Верно всё, КРОМЕ:
(A) тиролиберин активирует синтез и секрецию тиротропина
(Б) люлиберин активирует секрецию фоллитропина и лютропина
(B) гастрин-рилизинг гормон активирует секрецию гастрина, инсулина, глюкагона
(Г) кортиколиберин активирует секрецию пролактина
(Д) соматолиберин активирует секрецию гормона роста
5. Специфичность действия гормона определяется:
(A) характером эндотелия кровеносных капилляров в ткани-мишени
(Б) временем полужизни гормона в сосудистом русле органа
(B) концентрацией гормона в крови
(Г) ритмом секреции гормона эндокринной клеткой
(Д) наличием рецепторов гормона в клетках
6. Эндокринные клетки лежат параллельнымн тяжами и содержат значительное количество элементов гладкой эндоплазматической сети, множество липидных капель. В ответ на стимуляцию гипофизарным тропным гормоном клетки секретируют:
(A) окситоцин
(Б) катехоламины
(B) минералокортикоиды
(Г) тирокальцитонин
(Д) глюкокортикоиды
7. Базофильные клетки передней доли гипофиза, синтезирующие АКТГ. Верно всё, KPOME:
(А) развиваются из выпячивания промежуточного мозга
(Б) хорошо развита гранулярная эндоплазматическая сеть
(B) имеют рецепторы кортиколиберина
(Г) имеют рецепторы соматостатина
(Д) регулируют синтез и секрецию глюкокортикоидов
8. Клетки клубочковой зоны коры надпочечника. Верно всё, КРОМЕ:
(А) содержат много холестерина
(Б) хорошо развита гладкая эндоплазматическая сеть
(B) синтезируют альдостерон
(Г) развиваются из нервного гребня
(Д) тропный гормон - ангиотензин II
9. Для какой эндокринной железы не обнаружены тропные гормоны аденогипофиза?
(A) Яичник
(Б) Кора надпочечника
(B) Щитовидная железа
(Г) Паращитовидная железа
(Д) Яичко
10. АКТГ стимулирует выработку всех гормонов, КРОМЕ:
(A) альдостерона
(Б) прогестерона
(B) кортизола
(Г) кортикостерона
(Д) андрогенов

Пояснение. Каждый из нижеприведённых и пронумерованных вопросов 11-20 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:
А - если правильны ответы 1, 2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д- если правильны ответы $1,2,3$ и 4
11. Эндокринные железы:
(1) развиваются из экто-, мезо- и энтодермы
(2) паренхима представлена эндокринными клетками с хорошо развитым комплексом Гольджи
(3) вырабатываемые гормоны секретируются во внутреннюю среду
(4) кровеносные капилляры синусондного типа контактируют с эндокринными клетками
12. Укажите стероидные гормоны:
(1) тироксин
(2) кортизол
(3) AKTГ
(4) эстрогены
13. Укажите органы, где синтезируются пептидные гормоны:
(1) правое предсердие
(2) щитовидная железа
(3) паращитовидная железа
(4) надпочечники
14. В передней доле гипофиза синтезируются:
(1) липотропин
(2) β-эндорфин
(3) меланотрофин
(4) нейрофизины
15. Нейросекреторные ядра гипоталамуса:
(1) аксоны нейросекреторных клеток образуют гипоталамо-гипофизарный тракт
(2) нейроны синтезируют либерины
(3) вазопрессин по аксонам поступает в заднюю долю гипофиза
(4) либерины по аксонам поступают в срединное возвышение
16. Гонадотрофы:
(1) соматостатин регулирует активность клеток
(2) расположены в передней доле гипофиза
(3) имеют рецепторы люлиберина
(4) клетки-мишени вырабатываемых в них гормонов синтезируют стеронды
17. Система гипоталамо-гипофизарного кровоснабжения:
(1) часть аксонов нейросекреторных нейронов образует аксо-вазальные синапсы с кровеносными капиллярами срединного возвышения
(2) в капилляры срединного возвышения секретируются либерины и соматостатин
(3) кровь из капилляров срединного возвышения по венулам поступает в капилляры передней доли гипофиза
(4) эндокринные клетки передней доли гипофиза имеют рецепторы либеринов и соматостатина
18. Задняя доля гипофиза:
(1) представлена тяжами эндокринных клеток
(2) терминали аксонов гипоталамо-гипофизарного тракта формируют аксо-вазальные синапсы
(3) в цитоплазме эндокринных клеток - гранулы вазопрессина и окситоцина
(4) по аксонам гипоталамо-гипофизарного тракта транспортируются нейрофизины
19. Укажите мишени TTГ:
(1) C -клетки щитовидной железы
(2) синтезирующие паратиреокрин клетки ,
(3) хромаффинные клетки надпочечников
(4) клетки, синтезирующие йодсодержащие гормоны

20. Синтез глюкокортикоидов стимулируют:

(1) AKTГ
(2) ангиотензин II
(3) кортиколиберин
(4) атриопептин

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - Г

Стероидные гормоны (глюкокортикоиды) синтезируются в эндокринных клетках пучковой зоны коры надпочечника. В ацидофильных клетках аденогипофиза продуцируются гормоны белковой природы (соматотрофин и пролактин). Фолликулярные клетки щитовидной железы и хромаффинные клетки мозгового вещества надпочечника вырабатывают производные тирозина - йодсодержащие гормоны (T_{3} и T_{4}) и катехоламины (норадреналин, адреналин) соответственно. В β-клетках островков Лангерханса синтезируется полипептид - инсулин.

2. Правильный ответ - Г

Нейросекреторные нейроны в ядрах гипоталамуса синтезируют либерины (включая люлиберин), соматостатин, вазопрессин, окситоцин, нейрофизины. Либерины и статины по портальной системе кровотока попадают в переднюю долю гипофиза (аденогипофиз), где взаимодействуют со своими клетками-мишенями, регулируя их активность. Рецепторы к люлиберину встроены в мембрану гонадотропных клеток, синтезирующих лютропин и фоллитропин. Вазопрессин, окситоцин и нейрофизины по аксонам нейросекреторных нейронов надзрительных и околожелудочковых ядер гипоталамуса транспортируются в заднюю долю гипофиза (нейрогипофиз), где через аксо-вазальные синапсы секретируются в кровь.

3. Правильный ответ - В

Гормоны в задней доле не синтезируются, но в просвет кровеносных капилляров из аксонов нейросекреторных нейронов околожелудочкового и надзрительного ядер гипоталамуса секретируются вазопрессин, окситоцин и нейрофизины. Кроме кровеносных капилляров, аксонов нейросекреторных нейронов и их концевых расширений, в задней доле гипофиза присутствуют отростчатые глиальные клетки - питуициты. Фоллитропин синтезируется и поступает в кровь в передней доле гипофиза.

4. Правильный ответ - Г

Тиролиберин активирует синтез и секрецию тиротропина и пролактина; люлиберин активирует секрецию фоллитропина и лютропина; гастрин-рилизинг гормон активирует секрецию гастрина, инсулина, глюкагона; кортиколиберин стимулирует секрецию АКТГ; соматолиберин активирует секрецию гормона роста.

5. Правильный ответ - Д

Специфичность действия гормона зависит от наличия рецепторов для этого гормона в клеткахмишенях. Только после специфического узнавания гормоном своего рецептора клетка-мишень изменяет режим функционирования. Выделяют два класса рецепторов: мембранные и ядерные. Мембранные рецепторы пептидных гормонов (инсулин, пролактин) встроены в плазматическую мембрану клеток-мишеней. Ядерные рецепторы гормонов стероидной природы (глюкокортикоиды, эстрогены) имеют внутриклеточную локализацию.

6. Правильный ответ - Д

Речь идет о клетках пучковой зоны коры надпочечников, вырабатывающей глюкокортикоиды. Минералокортикоиды (альдостерон) синтезируются в клубочковой зоне коры надпочечников, тропный гормон - ангиотензин II. Катехоламины (норадреналин, адреналин) синтезируют хромаффинные клетки мозгового вещества надпочечников. Мелкие скопления и одиночные хромаффинные клетки обнаружены также в сердце, почках, симпатических ганглиях. С-клетки щитовидной железы секретируют кальцитонин. Морфология С-клеток характерна для клеток, синтезирующих белок на экспорт (присутствуют гранулярная эндоплазматическая сеть, комплекс Гольджи, секреторные гранулы). Окситоцин вырабатывается в многоотростчатых нейронах надзрительных и околожелудочковых ядер гипоталамуса.

7. Правильный ответ - А

Эндокринные клетки передней доли гипофиза развиваются из клеток эктодермального эпителия крыши ротовой ямки (карман Ра́тке), из выпячивания промежуточного мозга происходит нейрогипофиз. Участвующие в регуляции синтеза и секреции глюкокортикоидов и синтезирующие АКТГ эндокринные клетки передней доли гипофиза содержат хорошо развитую гранулярную эндоплазматическую сеть. В мембрану АКТГ-синтезирующих клеток встроены рецепторы кортиколиберина и соматостатина, регулирующие секреторную активн்ость клеток.

8. Правильный ответ - Г

Эндокринные клетки клубочковой зоны вырабатывают минералокортикоиды (главным образом альдостерон). Тропные гормоны - преимущественно ангиотензин II и в существенно меньшей степени АКТГ. Клетки имеют плотное округлое ядро с одним или двумя ядрышками, развитую гладкую эндоплазматическую сеть, некрупные митохондрии с пластинчатыми кристами, рибосомы, хорошо развитый комплекс Го́льджи и мелкие липидные включения, содержащие в основном эфиры холестерина. Кора надпочечника развивается из спланхнической мезодермы. Хромаффинные клетки мозгового вещества надпочечников происходят из нервного гребня.

9. Правильный ответ - Г

Функция эндокринных клеток паращитовидной железы регулируется не тропным гормоном, а непосредственно содержанием Ca^{2+} в плазме крови. Гипокальциемия усиливает секрецию паратиреокрина эндокринными клетками паращитовидной железы. Гиперкальциемия, наоборот, подавляет выработку ПТГ. Синтез половых гормонов в мужских (яички) и женских (яичники) половых железах регулируется фоллитропином и лютропином. Секрецию йодсодержащих гормонов фолликулярными клетками щитовидной железы стимулирует тиротропин. Синтез гормонов в эндокринных клетках коры надпочечников регулирует АКТГ.

10. Правильный ответ - Б

Тропный гормон аденогипофиза АКТГ регулирует секрецию гормонов коры надпочечников. АКТГ усиливает выработку глюкокортикоидов (кортизола и кортикостерона) клетками пучковой зоны, андрогенов - клетками сетчатой зоны. В меньшей степени АКТГ стимулирует продукцию альдостерона клетками клубочковой зоны. Ангиотензин II - компонент системы «ренин-ангиотензины» главный регулятор синтеза и секреции альдостерона. Прогестерон вырабатывается клетками жёлтого тела. В надпочечнике прогестерон - промежуточный продукт на пути образования глюкокортикоидов и андрогенов.

11. Правильный ответ - A

Эндокринные железы развиваются из всех трёх зародышевых листков. Эктодермальное происхождение имеют мозговое вещество надпочечника (продукт дифференцировки клеток нервного гребня), аденогипофиз (развивается из кармана Ра́тке). Из энтодермы происходят щитовидная и паращитовидные железы (эпителиальная часть органов). Спланхническая мезодерма даёт начало коре надпочечников. Паренхима эндокринных желёз представлена эндокринными клетками с хорошо развитым комплексом Гольджи. В клетках, где образуются гормоны белковой природы, как правило, содержатся выраженная гранулярная эндоплазматическая сеть, секреторные гранулы. Клетки, синтезирующие стероидные гормоны, имеют более выраженную гладкую эндоплазматическую сеть, много митохондрий и липидных включений с эфирами холестерина. Вырабатываемые эндокринными клетками гормоны секретируются во внутреннюю среду организма (в кровь, лимфу, тка́невую жидкость, спинномозговую жидкость). Эндокринные железы интенсивно кровоснабжаются и содержат густую сеть кровеносных капилляров фенестрированного типа, контактирующих с эндокринными клетками паренхимы.

12. Правильный ответ - B

Кортизол и эстрогены - стероидные гормоны. Тироксин $\left(\mathrm{T}_{4}\right)$ - производное тирозина, АКТГ — полипептид.

13. Правильный ответ - A

Пептидные гормоны синтезируются в кардиомиоцитах правого предсердия (атриопептин), в С-клетках щитовидной железы (тирокальцитонин), в главных клетках паращитовидных желёз (паратиреокрин). В надпочечниках синтезируются стероиды (минералокортикоиды, глюкокортикоиды, андрогены) и катехоловые амины (норадреналин, адреналин).

14. Правильный ответ - A

Базофилы аденогипофиза (кортикотрофы) экспрессируют ген проопиомеланокортина, что ведёт к синтезу ряда пептидов: АКТГ, липотропина, меланотрофина, β-эндорфина. Нейрофизины синтезируются в нейросекреторных нейронах гипоталамуса. По аксонам этих нейронов нейрофизины транспортируются в заднюю долю гипофиза (нейрогипофиз), где через аксо-вазальные синапсы секретируются в кровь.

15. Правильный ответ - Д

Секреторная активность всех эндокринных клеток гипофиза контролируется нейросекреторными нейронами гипоталамуса. Синтезируемые в этих нейронах либерины и статины транспортируются по аксонам в срединное возвышение гипоталамуса, секретируются в кровь и поступают в аденогипофиз, где взаимодействуют со своими клетками-мишенями, регулируя синтез и секрецию трофных гормонов. В надзрительных и околожелудочковых ядрах синтезируются окситоцин, вазопрессин, нейрофизины. По аксонам нейросекреторных нейронов в составе гипоталамо-гипофизарного пути эти гормоны транспортируются в заднюю долю гипофиза.

16. Правильный ответ - Д

Часть базофильных эндокринных клеток передней доли гипофиза, имеющих рецепторы люлиберина, синтезирует гонадотропные гормоны - фоллитропин и лютропин. Клетки-мишени этих гормонов расположены в половых железах и вырабатывают стероидные гормоны - тестостерон, эстрогены и прогестерон. Соматостатин подавляет активность гонадотрофов.

17. Правильный ответ - Д

Часть аксонов нейросекреторных нейронов гипоталамуса образует аксо-вазальные синапсы с кровеносными капиллярами срединного возвышения, где в кровь секретируются либерины и соматостатин. Кровь из первичной капиллярной сети срединного возвышения собирается в портальные вены, идущие по гипофизарной ножке в аденогипофиз. Здесь портальные вены переходят в капилляры вторичной сети, из которой либерины и соматостатин поступают к своим клеткам-мишеням.

18. Правильный ответ - В

Нейрогипофиз состоит из клеток нейроглии (питуицитов), кровеносных сосудов, аксонов гипотала-мо-гипофизарного тракта и их окончаний на кровеносных капиллярах (аксо-вазальные синапсы). В месте контакта со стенкой капилляра аксоны имеют локальные утолщения (тельца Хе́рринга), содержащие секреторные гранулы. По аксонам гипоталамо-гипофизарного тракта в нейрогипофиз транспортируются окситоцин, вазопрессин, нейрофизины.

19. Правильный ответ - Г

Фолликулярные клетки щитовидной железы - мишени ТTГ. Последний усиливает синтез и секрецию фолликулярными клетками йодсодержащих гормонов ($\mathrm{T}_{3}, \mathrm{~T}$). Активность C -клеток щитовидной железы, синтезирующих тирокальцитонин, и главных клеток паращитовидных желёз, вырабативающих ПТГ, регулируется содержанием в крови Са ${ }^{2+}$. Продукция катехоламинов хромаффинными клетками мозгового вещества надпочечников контролируется симпатическим отделом вегетативной нервной системы и глюкокортикоидами. Венозный дренаж надпочечников из коры осуществляется через синусоиды мозговой части, глюкокортикоиды коры стимулируют секрецию адреналина из хромаффинных клеток.
20. Іравильный ответ - Б

Синтез глюкокортикоидов в пучковой зоне коры надпочечников стимулируют АКТГ и опосредованно (через усиление синтеза и секреции АКТГ) - кортиколиберин. Атриопептин - гормон, секретируемый кардиомиоцитами правого предсердия в ответ на повышение АД. Ангиотензин II стимулирует выработку альдостерона в клубочковой зоне коры надпочечников.

10

Серgечно-сосуgистая система

Кровь выполняет свои функции, находясь в постоянном движении в кровеносных сосудах. Движение крови в сосудах обусловлено сокращениями сердца. Сердце и сосуды образуют замкнутую разветвлённую сеть - сердечно-сосудистую систему.
А. Сосуды. Кровеносные сосуды присутствуют почти во всех тканях. Их нет лишь в эпителиях, ногтях, хрящах, эмали зубов, в некоторых участках клапанов сердца и в ряде других областей, которые питаются за счёт диффузии необходимых веществ из крови. В зависимости от строения стенки кровеносного сосуда и его калибра в сосудистой системе различают артерии, артериолы, капилляры, венулы и вены.

1. Артерии - кровеносные сосуды, транспортирующие кровь от сердца. Стенка артерий амортизирует ударную волну крови (систолический выброс) и переправляет далее выбрасываемую с каждым ударом сердца кровь. Артерии, расположенные вблизи сердца (магистральные сосуды), испытывают наибольший перепад давления. Поэтому они обладают выраженной эластичностью (артерии эластического типа). Периферические артерии (распределительные сосуды) имеют развитую мышечную стенку (артерии мышечного типа), способны изменять величину просвета, а следовательно, скорость кровотока и распределение крови в сосудистом русле.
а. План строения кровеносных сосудов (рис. 10-11, 10-12). Стенка артерий и других сосудов (кроме капилляров) состоит из трёх оболочек: внутренней (t. intima), средней (t. media) и наружной (t. adventitia).
(1) Внутренняя оболочка
(a) Эндотелий. Поверхность t. intima выстлана пластом находящихся на базальной мембране эндотелиальных клеток. Последние в зависимости от калибра сосуда имеют различные форму и размеры.
(б) Подэндотелиальный слой. Под пластом эндотелия расположена прослойка рыхлой соединительной ткани.
(в) Внутренняя эластическая мембрана (membrana elastica interna) отделяет внутреннюю оболочку сосуда от средней.
(2) Средняя оболочка. В состав t. media, помимо соединительнотканного матрикса с небольшим количеством фибробластов, входят ГМК и эластические структуры (эластические мембраны и эластические волокна). Соотношение этих элементов главный критерий классификации артерий: в артериях мышечного типа преобладают ГМК, а в артериях эластического типа - эластические элементы.
(3) Наружная оболочка образована волокнистой соединительной тканью с сетью кровеносных сосудов (vasa vasorum) и сопровождающими их нервными волокнами (преимущественно терминальные ветвления постганглионарных аксонов симпатического отдела нервной системы).
б. Артерии эластического типа (рис. 10-13). К ним относят аорту, лёгочные, общую сонную и подвздошные артерии. В состав их стенки в большом количестве входят эластические мембраны и эластические волокна. Толщина стенки артерий эластического типа составляет примерно 15% диаметра их просвета.
(1) Внутренняя оболочка
(a) Эндотелий. Просвет аорты выстлан крупными эндотелиальными клетками полигональной или округлой формы, связанными плотными и щелевыми контактами. В цитоплазме присутствуют электроноплотные гранулы, многочисленные светлые пиноцитозные пузырьки, митохондрии. В области ядра клетка выпячивается в просвет сосуда. Эндотелий отделён от подлежащей соединительной ткани хорошо выраженной базальной мембраной.
(б) Подэндотелиальный слой. В подэндотелиальной соединительной ткани (слой Ла́нгханса) присутствуют эластические и коллагеновые волокна (коллагены I и III). Здесь же встречаются чередующиеся с фибробластами продольно ориентированнье ГМК. Внутренняя оболочка аорты содержит также коллаген типа VI - компонент микрофибрилл. Микрофибриллы находятся в непосредственной близости от клеток и коллагеновых фибрилл, "заякоривая» их в межклеточном матриксе.
(2) Средняя оболочка имеет толщину около 500 мкм и содержит окончатые эластические мембраны, ГМК, коллагеновые и эластические волокна.
(a) Окончатые эластические мембраны имеют толщину 2-3 мкм, их около $50-75$. С возрастом количество и толщина окончатых эластических мембран увеличиваются.
(б) ГМК. Между эластическими мембранами располагаются ГМК. Направление хода ГМК - по спирали. ГМК артерий эластического типа специализированы для синтеза эластина, коллагена и компонентов аморфного межклеточного вещества. Последнее базофильно, что связано с высоким содержанием сульфатированных гликозаминогликанов.
(в) Кардиомиоциты присутствуют в средней оболочке аорты и лёгочной артерии.
(3) Наружная оболочка содержит пучки коллагеновых и эластических волокон, ориентированных продольно или идущих по спирали. Адвентиция содержит мелкие кровеносные и лимфатические сосуды, а также миелиновые и безмиелиновые нервные волокна. Vasa vasorum кровоснабжают наружную оболочку и наружную треть средней оболочки. Считают, что ткани внутренней оболочки и внутренних двух третей средней оболочки питаются за счёт диффузии веществ из крови, находящейся в просвете сосуда.
в. Артерии мышечного типа (рис. 10-12). Их суммарный диаметр (толщина стенки + диаметр просвета) достигает 1 cm , диаметр просвета варьирует от 0,3 до 10 мм. Артерии мышечного типа относят к распределительным, т.к. именно эти сосуды (благодаря выраженной способности к изменению просвета) контролируют интенсивность кровотока (перфузию) отдельных органов.
(1) Внутренняя эластическая мембрана расположена между внутренней и средней оболочками. Не во всех артериях мышечного типа внутренняя эластическая мембрана развита одинаково хорошо. Сравнительно слабо она выражена в артериях мозга и его оболочек, в ветвях лёгочной артерии, а в пупочной артерии полностью отсутствует.
(2) Средняя оболочка. В артериях мышечного типа большого диаметра средняя оболочка содержит 10-40 плотно упакованных слоёв ГМК. ГМК ориентированы циркулярно (точнее - спирально) по отношению к просвету сосуда, что обеспечивает регуляцию просвета сосуда в зависимости от тонуса ГМК.
(a) Вазоконстрикция - сужение просвета артерии, происходит при сокращении ГМК средней оболочки.
(б) Вазодилатация - расширение просвета артерии, происходит при расслаблении ГМК.
(3) Наружная эластическая мембрана. Снаружи средняя оболочка отграничена эластической пластинкой, выраженной слабее, чем внутренняя эластическая мембрана. Наружная эластическая мембрана хорошо развита лишь в крупных артериях мышечного типа. В мышечных артериях меньшего калибра эта структура может отсутствовать совсем.
(4) Наружная оболочка в артериях мышечного типа развита хорошо. Внутренний её слой - плотная волокнистая соединительная ткань, а наружный - рыхлая соединительная ткань. Обычно в наружной оболочке присутствуют многочисленные нервные волокна и окончания, сосуды сосудов, жнровые клетки. В наружной оболочке коронарных и селезёночной артерий присутствуют ориентированные продольно (по отношению к длиннику сосуда) ГМК.
(5) Коронарные артерии. К артериям мышечного типа относят и кровоснабжающие миокард венечные артерии. В большинстве участков этих сосудов эндотелий максимально приближен к внутренней эластической мембране. В участках ветвления коронаров (особенно в раннем детском возрасте) внутренняя оболочка утолщена. Здесь малодифференцированные ГМК, мигрирующие через фенестры внутренней эластической мембраны из средней оболочки, вырабатывают эластин.
2. Артериолы. Артерии мышечного типа переходят в артериолы - короткие сосуды, имеющие важное значение для регуляции артериального давления (АД). Стенка артериолы состоит из эндотелия, внутренней эластической мембраны, нескольких слоёв циркулярно ориентированных ГМК и наружной оболочки. Снаружи к артериоле прилегают периваскулярные соединительнотканные клетки. Здесь же видны профили безмиелиновых нервных волокон, а также пучки коллагеновых волокон.
(a) Терминальные артериолы содержат продольно ориентированные эндотелиальные клетки и вытянутые ГМК. От терминальной артериолы отходит капилляр. В этом месте обычно располагается скопление циркулярно ориентированных ГМК, образующих прекапиллярный сфинктер. Снаружи от ГМК расположены фибробласты. Прекапиллярный сфинктер - единственная структура капиллярной сети, содержащая ГМК.
(б) Приносящие артериолы почки. В артериолах наименьшего диаметра внутренняя эластическая мембрана отсутствует, исключение составляют приносящие артериолы в почке. Несмотря на свой малый диаметр ($10-15$ мкм), они имеют прерывистую эластическую мембрану. Отростки эндотелиальных клеток проходят через отверстия во внутренней эластической мембране и образуют с ГМК щелевые контакты.
3. Капилляры. Разветвлённая капиллярная сеть соединяет артериальное и венозное русла. Капилляры участвуют в обмене веществ между кровью и тканями. Общая обменная поверхность (поверхность капилляров и венул) составляет не менее $1000 \mathrm{~m}^{2}$, а в пересчёте на 100 г ткани - 1,5 м 2. В регуляции капиллярного кровотока принимают непосредственное участие артериолы и венулы. В совокупности эти сосуды (от артериол до венул включительно) образуют структурно-функциональную единицу сердечно-сосудистой системы - терминальное, или микроциркуляторное русло.
a. Плотность капилляров в различных органах существенно варьирует. Так, на 1 мм 3 миокарда, головного мозга, печени, почек приходится 2500-3000 капилляров; в скелетной мышце - $300-1000$ капилляров; в соединительной, жировой и костной тканях их значительно меньше.
4. Микроциркуляторное русло (рис. 10-1) организовано следующим образом: под прямым углом от артериолы отходят т.н. метартериолы (терминальные артериолы), а уже от них берут начало анастомозирующие истинные капилляры, образующие сеть. В местах отделення капилляров от метартериолы имеются прекапиллярные сфинктеры, контролирующие локальный объём крови, проходящий через истинные капилляры. Объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами или мелкие артерии с мелкими венами. Стенка сосудов анастомоза содержит много ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важную роль в терморегуляции (мочка уха, пальцы).
в. Структура. Стенка капилляра образована эндотелием, его базальной мембраной и перицитами (см. главу 6.2 Б 2 м). Различают три основных типа капилляров (рис. 10-2): с непрерывным эндотелием (1), с фенестрированным эндотелием (2) и с прерывистым эндотелием (3).
(1) Капилляры с непрерывным эндотелием - наиболее распространённый тип. Диаметр их просвета менее 10 мкм. Эндотелиальные клетки связаны при помощи плотных контактов, содержат множество пиноцитозных пузырьков, участвующих

Рис. 10-1. Микроциркуляторное русло. Артериола \rightarrow метартериола \rightarrow капиллярная сеть с двумя отделами - артериальный и венозный \rightarrow венула. Артериовенозные анастомозы соединяют артериолы с венулами [из Copenhaven VM et al, 1972]

Рис. 10-2. Типы капилляров: \mathbf{A} - капилляр с непрерывным эндотелием, Б - с фенестрированным эндотелием, B - капилляр синусоидного типа [из Hees H, Sinowatz $F, 1992$]

в транспорте метаболитов между кровью и тканями. Капилляры этого типа характерны для мышц и лёгких.
Барьеры. Частный случай капилляров с непрерывным эндотелием - капилляры, формирующие гематоэнцефалический (А 3 г) и гематотимический барьеры. Для эндотелия капилляров барьерного типа характерно умеренное количество пиноцитозных пузырьков и плотные межэндотелиальные контакты.
(2) Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в экзокринной части поджелудочной железы. Фенестра - истончённый участок эндотелиальной клетки диаметром $50-80$ нм. Предполагают, что фенестры облегчают транспорт веществ через эндотелий. Наиболее чётко фенестры видны на электронограммах капилляров почечных телец (см. главу 14 Б 2 в).
(3) Капилляр с прерывистым эндотелием называют также капилляром синусоидного типа, или синусоидом. Подобный тип капилляров присутствует в кроветворных органах, состоит из эндотелиальных клеток с щелями между ними и прерывистой базальной мембраны.
г. Гематоэнцефалический барьер (рис. 10-3) надёжно изолирует мозг от временных изменений состава крови. Непрерывный эндотелий капилляров - основа гематоэнцефалического барьера. Снаружи эндотелиальная трубка покрыта базальной мембраной. Капилляры мозга почти полностью окружены отростками астроцитов.
(1) Эндотелиальныс кдетки. В капиллярах мозга эндотелиальные клетки связаны при помощи непрерывных цепстек плотных контактов.
(2) Функция. Гематоэнцефалический барьер функционирует как избирательный фильтр.
(а) Липофильные вещества. Наибольшей проницаемостью обладают вещества, растворимые в липидах (например, никотин, этиловый спирт, героин).
(б) Транспортные системы
(i) Глюкоза транспортируется из крови в мозг при помощи соответствующих транспортёров [глава 2 I B 16 (1) (a) (i)].

Рис. 10-3. Гематоэнцефалический барьер образован эндотелиальными клетками капилляров мозга. Базальная мембрана, окружающая эндотелий, и перициты, а также астроциты, ножки которых полностью охватывают капилляр снаружи, не являюются компонентами барьера [из Goldstein GW, Betz AL, 1986]
(ii) Глицин. Особое значение для мозга имеет система транспорта тормозного нейромедиатора - аминокислоты глицина. Его концентрация в непосредственной близости от нейронов должна быть значительно ниже, чем в крови. Эти различия в концентрации глицина обеспечивают транспортные системы эндотелия.
(в) Лекарственные препараты. Многие препараты плохо растворимы в липидах, поэтому медленно или совсем не проникают в мозг. Казалось бы, с увеличением концентрации лекарственного препарата в крови можно было ожидать увеличения его транспорта через гематоэнцефалический барьер. Однако это допустимо только в случае использования малотоксичных препаратов (например, пенициллина). Большинство препаратов дают побочные эффекты, поэтому их нельзя вводить в избытке в расчёте на то, что часть дозы достигнет мишени в мозге. Один из путей введения лекарства в мозг наметился после установления фено́мена резкого усиления проницаемости гематоэнцефалического барьера при введении в сонную артерию гипертонического раствора сахара, что связано с эффектом временного ослабления контактов между эндотелиальными клетками гематоэнцефалического барьера.
4. Венулы как никакие другие сосуды имеют прямое отношение к течению воспалительных реакций. Через их стенку при воспалении проходят массы лейкоцитов (диапедез) и плазма. Кровь из капилляров терминальной сети последовательно поступает в посткапиллярные, собирательные, мышечные венулы и попадает в вены.
a. Посткапиллярная венула. Венозная часть капилляров плавно переходит в посткапиллярную венулу. Её диаметр может достигать 30 мкм. По мере увеличения диаметра посткапиллярной венулы увеличивается количество перицитов.
Гистамин (через гистаминовые рецепторы) вызывает резкое увеличение проницаемости эндотелия посткапиллярных венул, что приводит к отёку окружающих тканей.
6. Собирательная венула. Посткапиллярные венулы впадают в собирательную венулу, имеющую наружную оболочку из фибробластов и коллагеновых волокон.
в. Мышечная венула. Собирательные венулы впадают в мышечные венулы диаметром до 100 мкм. Название сосуда - мышечная венула - определяет присутствие ГМК. Эндотелиальные клетки мышечной венулы содержат большое количество актиновых микрофиламентов, играющих важную роль для изменения формы эндотелиальных клеток. Отчётливо видна базальная мембрана, разделяющая клетки двух главных типов (эндотелиальные клетки и ГМК). Наружная оболочка сосуда содержит пучки коллагеновых волокон, ориентированных в различных направлениях, фибробласты.
5. Вены - сосуды, по которым кровь оттекает от органов и тканей к сердцу. Около 70% объёма циркулирующей крови находится в венах. В стенке вен, как и в стенке артерий, различают те же три оболочки: внутреннюю (йнтиму), среднюю и наружную (адвентициальную). Вены, как правило, имеют бо́льший диаметр, чем одноимённые артерии. Их просвет, в отличие от артерий, не зияет. Стенка вены тоныше. Если сравнивать размеры отдельных оболочек одноимённых артерии и вены, то легко заметить, что у вен средняя оболочка тоньше, а наружная оболочка, напротив, более выражена. Некоторые вены имеют клапаны.
a. Внутренняя оболочка состоит из эндотелия, снаружи от которого расположен субэндотелиальный слой (рыхлая соединительная ткань и ГМК). Внутренняя эластическая мембрана выражена слабо и часто отсутствует.
б. Средняя оболочка содержит циркулярно ориентированные ГМК. Между ними располагаются преимущественно коллагеновые и в меньшем количестве эластические волокна. Количество ГМК в средней оболочке вен существенно меньше, чем в средней оболочке, сопровождающей артерии. В этом отношении отдельно стоят вены нижних конечностей. Здесь (преимущественно в подкожных венах) средняя оболочка содержит значительное количество ГМК, во внутренней части средней оболочки они ориентированы продольно, а в наружной - циркулярно.
в. Полиморфность. Структура стенки различных вен характеризуется многообразием. Не во всех венах имеются все три оболочки. Средняя оболочка отсутствует во всех безмьшечных венах - головного мозга, мозговых оболочек, сетчатки глаза, трабекул селезёнки, костей, в мелких венах внутренних органов. Верхняя полая вена, плечеголовные и яремные вены содержат безмышечные участки (нет средней оболочки). Средняя и наружная оболочки отсутствуют в синусах твёрдой мозговой оболочки, а также в её венах.
r. Клапаны. Вены, особенно конечностей, имеют клапаны, пропускающие кровь только к сердцу. Соединительная ткань образует структурную основу створок клапанов, а вблизи их фиксированного края располагаются ГМК. В целом клапаны можно рассматривать как складки и́нтимы.
6. Сосудистые афференты. Изменения $\mathrm{pO}_{2}, \mathrm{pCO}_{2}$ крови, концентрация H^{+}, молочной кислоты, пирувата и ряда других метаболитов оказывают как локальные эффекты на стенку сосудов, так и регистрируются вмонтированными в стенку сосудов хеморецепторами, а также барорецепторами, реагирующими на давление в просвете сосудов. Эти сигналы достигают центров регуляции кровообращения и дыхания. Ответы ЦНС реализует двигательная вегетативная иннервация ГМК стенки сосудов (см. главу 7 III Г) и миокарда (см. главу 7 II В). Кроме того, существует мощная система гуморальных регуляторов ГМК стенки сосудов (вазоконстрикторы и вазодилататоры) и проницаемости эндотелия.
а. Барорецепторы особенно многочисленны в дуге аорты и в стенке крупных вен, лежащих близко к сердцу. Эти нервные окончания образованы терминалями волокон, проходящих в составе блуждающего нерва.
6. Спецнализированные сенсорные структуры. В рефлекторной регуляции кровообращения участвуют каротидный синус и каротидное тельце (рис. 10-4), а также подобные им образования дуги аорты, лёгочного ствола, правой подключичной артерии.
(1) Каротидный синус расположен вблизи бифуркации общей сонной артерии, это расширение просвета внутренней сонной артерии тотчас у места её ответвления от общей сонной артерии. В области расширения средняя оболочка сосуда истончена, а наружная, напротив, утолщена. Здесь, в наружной оболочке, присутствуют многочисленные барорецепторы. Если учесть, что средняя оболочка сосуда в пределах каротидного синуса относительно тонка, то легко представить, что нервные окончания в наружной оболочке высокочувствительны к любым изменениям АД. Отсюда информация поступает в центры, регулирующие деятельность сер-дечно-сосудистой системы.

Нервные окончания барорецелторов каротидного синуса - терминали волокон, проходящих в составе синусного нерва (Хе́ринга) - ветви языкоглоточного нерва.

Рис. 10-4. Локализация каротидного синуса и каротидного тельца. Каротидный синус расположен в утолщении стенки внутренней сонной ар. терии вблизи бифуркации общей сонной артерии. Здесь же, тотчас в области бифуркации, находится каротидное тельце [из $\mathrm{Ham} \mathrm{AW}, \mathrm{1974]}$
(2) Каротидное тельце (рис. 10-5) реагирует на изменения химического состава крови. Тельце расположено в стенке внутренней сонной артерии и состоит из клеточных скоплений, погружённых в густую сеть широких капилляров синусоидоподобного типа. Каждый клубочек каротидного тельца (гломус) содержит $2-3$ гломусных клетки, или клетки I типа, а на периферии клубочка расположены 1-3 клетки II типа. Афферентные волокна для каротидного тельца содержат вещество Р и относящиеся к кальцитониновому гену пептиды (см. главу 9IV B 26 (3)).
(a) Клетки I типа образуют синаптические контакты с терминалями афферентных волокон. Для клеток I типа характерно обилие митохондрий, светлых и электроноплотных синаптических пузырьков. Клетки I типа синтезируют ацетилхолин, содержат фермент синтеза этого нейромедиатора (холинацетилтрансфераза), а также эффективно работающую систему захвата холина. Физиологическая роль ацетилхолина остаётся неясной. Клетки I типа имеют н- и м-холинорецепторы. Активация любого из этих типов холинорецепторов вызывает или облегчает освобождение из клеток I типа другого нейромедиатора - дофамина. При снижении pO_{2} секреция дофамина из клеток I типа возрастает. Клетки I типа могут формировать между собой контакты, похожие на синапсы.
(б) Эфферентная иннервация. На гломусных клетках заканчиваются волокна, проходящие в составе синусного нерва (Хе́ринга), и постганглионарные волокна из верхнего шейного симпатического ганглия. Терминали этих волокон содержат светлые (ацетилхолин) или гранулярные (катехоламины) синаптические пузырьки.

Рис. 10-5. Клубочек каротидного тельца состоит из 2-3 клеток I типа (гломусные клетки), окружённых 1-3 клетками II типа. Клетки I тнпа образуют синапсы (нейромедиатор - дофамин) с терминалямн афферентных нервных волокон
(в) Функция. Каротидное тельце регистрирует изменения pCO_{2} и pO_{2}, а также сдвиги рН крови. Возбуждение передаётся через синапсы на афферентные нервные волокна, по которым импульсы поступают в центры, регулирующие деятельность сердца и сосудов. Афферентные волокна от каротидного тельца проходят в составе блуждающего и синусного нервов (Хе́ринга).
7. Главные клеточные типы сосудистой стенки - ГМК и эндотелиальные клетки.
а. Гладкомышечные клетки. Просвет кровеносных сосудов уменьшается при сокращении гладкомышечных клеток средней оболочки или увеличивается при их расслаблении, что изменяет кровоснабжение органов и величину АД.
(1) Структура (см. главу 7 III Б). ГМК сосудов имеют отростки, образующие с соседними ГМК многочисленные щелевые контакты. Такие клетки электрически сопряжены, через щелевые контакты возбуждение (ионный ток) передаётся от клетки к клетке. Это обстоятельство важно, т.к. в контакте с двигательными терминалями находятся только ГМК, расположенные в наружных слоях t.media. ГМК стенки сосудов (в особенности артериол) имеют рецепторы к разным гуморальным факторам.
(2) Эффект вазоконстрикции реализуется при взаимодействии агонистов с α-адренорецепторами, рецепторами серотонина, ангиотензина II, вазопрессина, тромбоксана A $_{2}$.
α-Адренорецепторы. Стимуляция α-адренорецепторов приводит к сокращению ГМК сосудов.
(i) Норадреналин - по преимушеству агонист α-адренорецепторов.
(ii) Адреналин - агонист α - и β-адренорецепторов. Если сосуд имеет ГМК с преобладанием α-адренорецепторов, то адреналин вызывает сужение просвета таких сосудов.
(3) Вазодилататоры. Если в ГМК преобладают β-адренорецепторы, то адреналин вызывает расширение просвета сосуда. Агонисты, вызывающие в большинстве случаев расслабление ГМК: атриопептин (см. $\mathbf{2} \mathbf{6}$ (3)), брадикинин, VIP, гистамин, относящиеся к кальцитониновому гену пептиды (см. главу 9 IV в 2 б (3)), простагландины, оксид азота - NO.
(4) Двигательная вегетативная иннервация. Вегетативная нервная система регулирует величину просвета сосудов.
(a) Адренергическая иннервация расценивается как преимущественно сосудосуживающая.
Сосудосуживающие симпатические волокна обильно иннервируют мелкие артерии и артериолы кожи, скелетных мышц, почек и чревной области. Плотность иннервации одноимённых вен значительно меньше. Сосудосуживающий эффект реализуется при помощи норадреналина - агониста α-адренорецепторов.
(б) Холинергическая иннервация. Парасимпатические холинергические волокна иннервируют сосуды наружных половых органов. При половом возбуждении вследствие активации парасимпатической холинергической иннервации происходит выраженное расширение сосудов половых органов и увеличение в них кровотока. Холинергический сосудорасширяющий эффект прослежен также в отношении мелких артерий мягкой мозговой оболочки.
(5) Пролиферация. Численность популяции ГМК сосудистой стенки контролируют факторы роста и цитокины. Так, цитокины макрофагов и Т-лимфоцитов (трансформирующий фактор роста β, ИЛ-1, γ-ИФН) сдерживают пролиферацию ГМК. Эта проблема имеет важное значение при атеросклерозе, когда пролиферация ГМК усиливается под действием факторов роста, вырабатываемых в сосудистой стенке (тромбоцитарный фактор роста [PDGF], фактор роста фибробластов [bFGF], инсулиноподобный фактор роста 1 [IGF-1] и фактор некроза опухоли α [TNF α]).
(6) Фенотипы ГМК. Различают два варианта ГМК сосудистой стенки: сократительный и синтетический.
(a) Сократительный фенотип. ГМК, экспрессирующие сократительный фенотип, имеют многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Гранулярная эндоплазматическая сеть в них выражена умеренно. Подобные ГМК не способны к миграции и не вступают в митозы, т.к. нечувствительны к эффектам факторов роста.
(б) Синтетический фенотип. ГМК, экспрессирующие синтетический фенотип, имеют хорошо развитые гранулярную эндоплазматическую сеть и комплекс Го́льджи; клетки синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликкан), цитокины и факторы роста. ГМК в области атеросклеротического поражения сосудистой стенки перепрограммируются с сократительного на синтетнческий фенотип. При атеросклерозе ГМК вырабатывают факторы роста (например, тромбоцитарный фактор роста [PDGF], щелочной фактор роста фибробластов [bFGF]), усиливающие пролиферацию соседних ГМК.
б. Эндотелиальная клетка. Стенка кровеносного сосуда очень тонко реагирует на изменения гемодинамики и химического состава крови. Своеобразным чувствительным

элементом, улавливающим эти изменения, является эндотелиальная клетка, которая с одной стороны омывается кровью, а другой обращена к структурам сосудистой стенки.
(1) Влияние на ГМК сосудистой стенки
(a) Восстановление кровотока при тромбозе. Воздействие лигандов (АДФ и серотонин, тромбин) на эндотелиальную клетку стимулирует секрецию расслабляющего фактора. Eго мишени - расположенные поблизости ГМК. В результате расслабления ГМК просвет сосуда в области тромба увеличивается, и кровоток может восстановиться. K аналогичному эффекту приводит активация других рецепторов эндотелиальной клетки: гистамина, м-холинорецепторов, α_{2}-адренорецепторов.
Оксид азота - эндотелием освобождаемый фактор вазодилатации, образующийся из l-аргинина в клетках эндотелия сосудов. Недостаточность NO вызывает повышение АД, образование атеросклеротических бляшек; избыток NO может привести к коллапсу.
(б) Секреция факторов паракринной регуляции. Эндотелиальные клетки контролируют тонус сосудов, выделяя ряд факторов паракринной регуляции (см. главу 9 I K 2). Одни из них вызывают вазодилатацию (например, простациклин), а другие - вазоконстрикцию (например, эндотелин-1).

Эндотелин-1 участвует также в аутокринной регуляции эндотелиальных клеток, индуцируя выработку окиси азота и простациклина; стимулирует секрецию атриопептина и альдостерона, подавляет секрецию ренина. В наибольшей мере способность синтезировать эндотелин-1 проявляют эндотелиальные клетки вен, коронарных артерий и артерий мозга.
(в) Регуляция фенотипа ГМК. Эндотелий вырабатывает и секретирует гепариноподобные вещества, поддерживающие сократительный фенотип ГМК.
(2) Свёртывание крови. Эндотелиальная клетка - важный компонент процесса гемокоагуляции (см. главу 6.1 II B 7). На поверхности эндотелиальных клеток может происходить активация протромбина факторами свёртывания. С другой стороны, эндотелиальная клетка проявляет антикоагуляционные свойства.
(a) Факторы свёртывания. Прямое участие эндотелия в свёртывании крови состоит в секреции эндотелиальными клетками некоторых плазменных факторов свёртывания (например, фактора фон Ви́ллебранда).
(б) Поддержание нетромбогенной поверхности. В нормальных условиях эндотелий слабо взаимодействует с форменными элементами крови, как и с факторами свёртывания крови.
(в) Торможенне агрегации тромбоцитов. Эндотелиальная клетка вырабатывает простацнклин, тормозящий агрегацию тромбоцитов.
(3) Факторы роста и цитокины. Эндотелиальные клетки синтезируют и секретируют факторы роста и цитокины, влияюцие на поведение других клеток сосудистой стенки. Этот аспект имеет важное значение в механизме развития атеросклероза, когда в ответ на патологическое воздействие со стороны тромбоцитов, макрофагов и ГМК эндотелиальные клетки вырабатывают тромбоцитарный фактор ростта (PDGF), щелочной фактор роста фибробластов (bFGF), инсулиноподобный фактор роста 1 (IGF-1), ИЛ-1, трансформирующий фактор роста β (TGF). С другой стороны, эндотелиальные клетки являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток вызывает щелочной фактор роста фибробластов (bFGF), а пролиферацию только эндотелиальных клеток стимулирует фактор роста эндотелиальных клеток, вырабатываемый тромбоцитами. Цитокины из макрофагов и Т-лимфоцитов - трансформирующий фактор роста β (TGFß), ИЛ-1 и γ-ИФН - угнетают пролиферацию эндотелиальных клеток.
(4) Метаболическая функция
(a) Процессинг гормонов. Эндотелий участвует в модификации циркулирующих в крови гормонов и других биологически активных веществ. Так, в эндотелии сосудов лёгких происходит конверсия ангиотензина I в ангиотензин II.
(б) Инактивация биологически активных веществ. Эндотелиальные клетки метаболизируют норадреналин, серотонин, брадикинин, простагландины.
(в) Расщепление липопротеинов. В эндотелиальных клетках происходит расщепление липопротеинов с образованием триглицеридов и холестерина.
(5) Хоминг лимфоцитов. Слизистая оболочка ЖКТ и ряда других трубчатых органов содержит скопления лимфоцитов. Вены в этих областях, а также в лимфатических узлах имеют высокий эндотелий, экспрессирующий на своей поверхности т.н. сосудистый адрессин, узнаваемый молекулой CD44 циркулирующих в крови лимфоцитов. В результате лимфоциты фиксируются в этих областях (хоминг).
(6) Барьерная функция. Эндотелий контролирует проницаемость сосудистой стенки. Наиболее наглядно эта функция проявляется в гематоэнцефалическом (А 3 г) и гематотимическом [глава 11 II A 3 а (2)] барьерах.
8. Ангиогенез - процесс образования и роста кровеносных сосудов. Он происходит как в нормальных условиях (папример, в области фолликула яичника после овуляции), так и в патологических (при заживлении ран, росте опухоли, в ходе иммунных реакций; наблюдается при неоваскулярной глаукоме, ревматоидном артрите и т.д.).
a. Ангиогенные факторы. Факторы, стимулирующие образование кровеносных сосудов, называют ангиогенными. K ним относят факторы роста фибробластов (aFGF кислый и bFGF - осно́вный), ангиогенин, трансформирующий фактор роста а (TGF α). Все ангиогенные факторы можно подразделить на две группы: первая - прямо действующие на эндотелиальные клетки и стимулирующие их митозы и подвижность, и вторая - факторы непрямого влияния, воздействующие на макрофаги, которые, в свою очередь, выделяют факторы роста и цитокины. К факторам второй группы относят, в частности, ангиогенин.
б. Торможение ангиогенеза имеет важное значение, его можно рассматривать как потенциально эффективный метод борьбы с развитием опухолей на ранних стадиях, а также других заболеваний, связанных с ростом кровеносных сосудов (например, неоваскулярная глаукома, ревматоидный артрит).
(1) Опухоли. Злокачественные опухоли требуют для роста интенсивного кровоснабжения и достигают заметных размеров после развития в них системы кровоснабжения. В опухолях происходит активный ангиогенез, связанный с синтезом и секрецией опухолевыми клетками ангиогенных факторов.
(2) Ингибиторы ангиогенеза - факторы, тормозящие пролиферацию главных клеточных типов сосудистой стенки, - секретируемые макрофагами и Т-лимфоцитами цитокины: трансформирующий фактор роста β (TGF β), ИЛ-1 и γ-ИФН.
Источники. Естественный источник факторов, тормозящих ангиогенез, - ткани, не содержащие кровеносных сосудов. Речь идет об эпителии и хряще. Исходя из предположения о том, что отсутствие кровеносных сосудов в указанных тканях может быть связано с выработкой в них факторов, подавляющих ангиогенез, проводятся работы по выделению и очистке подобных факторов из хряща.

Б. Сердце

1. Развитие (рис. $\mathbf{1 0 . 6}$ и 10-7). Сердие закладывается на 3 -й неделе внутриутробного развития. В мезенхиме между энтодермой и висцеральным листком спланхнотома образуются две эндокардиальные трубки, выстланные эндотелием. Эти трубки - зачаток эндокарда. Трубки растут и окружаются висцеральным листком спланхнотома. Эти участки

спланхнотома утолщаются и дают начало миоэпикардиальным пластинкам. По мере смыкания кишечной трубки обе закладки сердца сближаются и срастаются. Теперь общая закладка сердца (сердечная трубка) имеет вид двухслойной трубки. Из эндокардиальной её части развивается эндокард, а из миоэпикардиальной пластинки - миокард и эпикард.

Рис. 10-6. Закладка сердца. А - 17-суточный эмбрион; $\mathbf{B}-18$-суточный эмбрион; \mathbf{B} - эмбрион на стадии $4-х$ сомитов (21 сутки)

Рис. 10-7. Развитие сердца. 1 - первичная межпредсердная перегородка; 2 - атриовентиркулярный (AB) канал; 3 - межжелудочковая перегородка; 4 - septum spurium; 5 - первичное отверстие; 6 - вторичное отверстие; 7 - правое предсердие; 8 - левый желудочек; 9 - вторичная перегородка; 10 - подушка $A B$-канала; 11 межжелудочковое отверстие; 12 - вторичная перегородка; $\mathbf{1 3}$ - вторичное отверстие в первичной перегородке; $\mathbf{1 4}$ - овальное отверстие; $\mathbf{1 5}$ - АВклапаны; 16 - предсердно-желудочковый пучок; 17 - сосочковая мышца; 18 - пограничный гребень; 19 - функциональное овальное отверстие; 20 - первичная перегородка, превратившаяся в клапан овального отверстия [из: Карлсон Б, 1983]
a. S-образная сердечная трубка. В течение $24-26$ суток первичная сердечная трубка быстро удлиняется и приобретает S-образную форму. Это оказывается возможным благодаря локальным изменениям формы клеток сердечной трубки. На этом этапе отчётливо выделяются следующие отделы сердца: венозный синус - камера на каудальном конце сердца, в неё впадают крупные вены. Краниальнее венозного синуса располагается расширенная часть сердечной трубки, образующая область предсердия. Из средней изогнутой части сердечной трубки развивается желудочек сердца. Желудочковая петля изгибается в каудальном направлении, что перемещает будущий желудочек, находившийся краниальнее предсердия, в дефинитивное положение. Область сужения желудочка и его перехода в артериальный ствол - конус. Между предсердием и желудочком просматривается отверстие - атриовентрикулярный (AB) канал.
6. Разделение на правое и левое сердце. Сразу же после образования предсердия и желудочка появляются признаки разделения сердца на правую и левую половины, которое протекает в течение 5 -й и 6 -й недель. На этом этапе формируются межжелудочковая перегородка, межпредсердная перегородка и эндокардиальные подушки.
(1) Межжелудочковая перегородка растёт из стенки первичного желудочка в направлении от верхушки к предсердию.
(2) Эндокардиальные подушки. Одновременно с формированием межжелудочковой перегородки в суженной части сердечной трубки между предсердием и желудочком образуются две большие массы рыхло организованной ткани - эндокардиальные подушки. Эндокардиальные подушки, состоящие из плотной соединительной ткани, участвуют в образовании правого и левого $A B$-каналов.
(3) Межпредсердная перегородка. На 5 -й неделе на краниальной стенке предсердия появляется срединная перегородка в форме полукруглой складки - первичная межпредсердная перегородка (septum primum). Одна дуга складки проходит по вентральной стенке предсердия, а другая - по дорсальной. Дуги сливаются вблизи AB -канала, но между ними остаётся первичное межпредсердное отверстие. Одновременно с этими изменениями венозный синус перемещается вправо и открывается в предсердие справа от межпредсердной перегородки. В этом месте формируются венозные клапаны.
в. Полное разделение сердца происходит после развития лёгких и их сосудистой сети. Когда первичная перегородка сливается с эндокардиальными подушками AB -клапана, происходит закрытие первичного межпредсердного отверстия.
(1) Вторичное межпредсердное отверстие. Массовая гибель клеток в краниальной части первичной перегородки приводит к образованию множества мелких отверстий, образующих вторичное межпредсердное отверстие; оно контролирует равномерное поступление крови в обе половины сердца.
(2) Вторичная межпредсердная перегородка. Вскоре в правом предсердии между венозными клапанами и первичной межпредсердной перегородкой формируется вторичная межпредсердная перегородка (septum secundum). Вогнутый её край направлен вверх к месту впадения синуса, а в дальнейшем - нижней полой вены. Формируется вторичное отверстие (овальное окно, foramen ovale). Ocтатки первичной межпредсердной перегородки, закрывающие овальное отверстие во вторичной межпредсердной перегородке, формируют клапан, распределяющий кровь между предсердиями.
(3) Направление потока крови. Поскольку выходное отверстие нижней полой вены лежит вблизи овального отверстия, то кровь из нижней полой вены попадает через него в левое предсердие. При сокращении левого предсердия кровь прижимает створку первичной перегородки к овальному отверстию. В результате

кровь не поступает из правого предсердия в левое, а перемещается из левого предсердия в левый желудочек. Первичная перегородка функционирует как односторонний клапан в овальном отверстии вторичной перегородки. Кровь поступает из нижней полой вены через овальное отверстие в левое предсердие. Кровь из нижней полой вены смешивается с кровью, поступающей в правое предсердие из верхней полой вены.
г. Кровоснабжение плода (рис. 10-8). Обогащённая кислородом кровь из плаценты с относительно низкой концентрацией CO_{2} по пупочной вене поступает в печень, а из печени - в нижнюю полую вену. Часть крови из пупочной вены через венозный проток, минуя печень, сразу попадает в систему нижней полой вены. В нижней полой вене происходит перемешивание крови. Кровь с высоким содержанием CO_{2} поступает в правое предсердие из верхней полой вены, которая собирает кровь из верхней части тела. Через овальное отверстие часть крови поступает из правого предсердия в левое. При сокращении предсердий клапан закрывает овальное отверстие, и кровь из левого предсердия поступает в левый желудочек и далее в аорту, т.е. в большой круг кровообращения. Из правого желудочка кровь направляется в лёгочную артерию, которая артериальным (бота́лловым) протоком связана с аортой. Следовательно, через артериальный проток сообщаются малый и большой круги кровообращения. На ранних этапах внутрнутробной жизни потребность в крови в несформированных лёгких ещё не велика, кровь из правого желудочка поступает в бассейн лёгочной артерии. Поэтому уровень развития правого желудочка будет определяться уровнем развития лёгкого. По мере развития лёгких и увеличения их объёма всё больше крови направляется к ним и всё меньше проходит через артериальный проток. Закрытие артериального протока происходит вскоре после рождения, когда лёгкие забирают всю кровь из правого сердца. После рождения перестают функционировать и редуцируются, превращаясь в соединительнотканные тяжи, и другие сосуды (пуповины и венозный проток). Овальное отверстие закрывается также после рождения.
д. Врождённые пороки сердца (ВПС)*
(1) Дефект межпредсердной перегородки (ДМПП) - постоянное сообщение левого и правого предсердий через дефект в межпредсердной перегородке. Дефект может располагаться в верхнем её отделе, у места впадения верхней полой вены (высокий вторичный ДМІІІ, дефект венозного синуса), в среднем (центральный дефект вторичной перегородки, центральный вторичный ДМПІІ), в области устья нижней полой вены (низкий дефект вторичной перегородки, низкий вторичный ДМІІІ). Различают также дефект первичной межпредсердной перегородки, расположенный в месте формирования эндокардиальных подушек (первичный ДМПП).
(2) Дефект межжелудочковой перегородки (ДМЖП) - постоянное сообщение левого и правого желудочков через дефект в межжелудочковой перегородке - наиболее часто встречающийся ВПС (25% всех ВПС). ДМЖП могут быть одиночными или множественными, обычно дефект располагается в её мембранозной части.
(3) Открытый артериальный проток. Артериальный (бота́лов) проток связывает лёгочную артерию и аорту; размеры его различны у разных больных.
(4) Тетрада Фалио́ - самый распространённый цианотический (синий) врождённый порок сердиа, составляющий 10% всех пороков. В основе порока лежит смещение и недоразвитие перегородки артериального конуса, что приводит к различной степени сужению выводного тракта правого желудочка (стеноз лёгочной артерии), декстропозиции аорты (аорта сидит верхом над дефектом межжелудочковой перегородки), ДМЖП, гипертрофии правого желудочка.

[^1]

Рис. 10-8. Схема кровоснабжения плода при рождении. Большая стрелка в сердие указывает ток крови из правого предсердия в левое во время диастолы. При сокращении предсердия овальное отверстие закрывается, и кровь из левого предсердия поступает в левый желудочек. 1 бронх; 2 - лёгочные капилляры (пока не функционируют); 3 - артерии, приносящие кровь к верхней части тела; 4 - лёгочная вена; 5 - левое предсердие (смешанная кровь); 6 - дорсальная аорта; 7 - левый желудочек, откуда кровь поступает в большой круг; 8 - ЖКТ; 9 - надпочечник; $\mathbf{1 0}$ - почка; 11 - прямая кишка; 12 - мочеточник; 13 - артерии, приносящие кровь к нижним конечностям; 14 плацента; 15 - пуповина; 16 - пупочное кольцо; 17 - пупочные артерии; 18 - пупочная вена; 19 - нижняя полая вена; 20 - печень; 21 правый желудочек, из которого кровь поступает в малый и большой круги кровообращения; 22 - правое предсердие (смешанная кровь); 23 - верхняя полая вена; 24 - артериальный (бота́ллов) проток; 25 - лёгочная артерия; 26 - лёгкое [из: Карлсон Б, 1983]
(5) Общий артериальный ствол. Среди детей раннего возраста порок встречается гораздо чаще, поскольку многие из них погибают на первом году жизни. Отсутствие нормального разделения артериального ствола (конотрункуса) приводит к тому, что от основания сердца отходит один сосуд, который обеспечивает системное, лёгочное и коронарное кровообращение; при этом имеется большой ДМЖП.
(6) Стеноз аорты. Под стенозом аорты следует понимать группу врождённых пороков, субстратом которых является сужение на пути выброса крови из левого желудочка в большой круг кровообращения.
(7) Коарктация аорты у мальчиков встречается в два раза чаще, чем у девочек. Обычно сегментарное сужение просвета аорты обнаруживают при переходе её дуги в нисходящую часть.
(8) Стеноз лёгочной артерии. При этом пороке имеется сращение комиссур клапана лёгочной артерии (куполообразная форма и узкое отверстие в центральной части).
(9) D-транспозиция магистральных сосудов чаще встречается у мальчиков. Аорта отходит от правого желудочка кпереди и справа от лёгочной артерии, отходящей от левого желудочка и располагающейся кзади от аорты.
(10) L-транспозиция магистральных сосудов. Артерии транспонированы, при этом аортальный клапан располагается кпереди и слева от клапана лёгочной артерии. Анатомически правый желудочек располагается слева, а левый желудочек - справа. АВ-клапаны также инвертированы; митральный - ведёт в анатомически левый желудочек, а трёхстворчатый в анатомически правый. Положение предсердий не изменено.
(11) Аномальный дренаж лёгочных вен. При этом пороке лёгочные вены (все или часть) не впадают в левое предсердие. Оксигенированная кровь из них либо непосредственно, либо через другие вены попадает в правое предсердие.
2. Строение. Стенка сердца состоит из трёх оболочек: эндокард, миокард и эпикард.
a. Эндокард - аналог tintima сосудов - выстилает полости сердца. В желудочках он тоньше, чем в предсердиях.
(1) Эндотелий. Внутренняя часть эндокарда представлена плоскими полигональными эндотелиальными клетками, расположенными на базальной мембране. Клетки содержат небольшое количество митохондрий, умеренно выраженный комплекс Го́льджи, пиноцитозные пузырьки, многочисленные филаменты диаметром 10 нм. Эндотелиальные клетки эндокарда имеют рецепторы атриопептина и α_{1}-адренорецепторы.
(2) Мышечно-эластический слой. Снаружи от эндотелия расположен мышечноэластический слой, содержащий ГМК, коллагеновые и эластические волокна.
(3) Наружный соединительнотканный слой. Наружная часть эндокарда состоит из волокнистой соединительной ткани. Здесь можно встретить островки жировой ткани, мелкие кровеносные сосуды, нервные волокна.
б. Миокард образуют рабочие кардиомиоциты, миоциты проводящей системы, поддерживающая рыхлая волокнистая соединительная ткань, коронарные сосуды. Эндокринная функция кардиомиоцитов - сннтез и секреция натриуретических факторов, включая атриопептин.
(1) Рабочие кардиомиоциты рассмотрены в главе 7 II $Б 1$.
(2) Проводящая система (рис. 10-9). Атипичные кардиомиоциты (см. главу 7 II Б 2) образуют синусно-предсердный узел, предсердно-желудочковый узел (АВ-узел), предсердно-желудочковый ствол (АВ-ствол). Клетки АВ-ствола (пучок Ги́ca) и ножек пучка Гúca переходят в волокна Пуркинье́. Существуют и дополнительные пути. Клетки проводящей системы при помощи десмосом и щелевых контактов формируют волокна. Назначенне атипичных кардиомиоцитов - автоматическая генерация импульсов и их проведение к рабочим кардиомиоцитам. Патология проводящей системы - различные блокады распространения возбуждения важный раздел кардиологической клиники.

Рпс. 10-9. Проводящая система сердца. Импульсы генерируются в синусно-предсердном узле и передаются по стенке предсердия в AB-узел, а затем по пучку Гиса, его правой и левой ножкам до волокон Пуркинье в стенке желудочков [из Junqueira LC, Carneiro J, 1991]
(a) Синусно-предсердный узел - номотопный водитель ритма, определяет автоматию сердца (главный водитель ритма), генерирует $60-90$ импульсов в минуту.
(i) Синусовая брадикардия может быть физиологичной (например, у тренированных атлетов). При снижении сердечного ритма до 35 в минуту может произойти потеря сознания. Атропин эффективен для временной стимуляции работы синусового узла. Основной же метод лечения синусовой брадиаритмии - электрокардиостимуляция.
(ii) Сивдром слабости синусового узла - нарушение образования и проведения синусовых импульсов, сопровождается брадикардией и обмороками. Этот синдром может возникнуть вследствие ИБС, идиопатического или воспалительного поражения синусового узла.
(iii) Остановка синусового узла - прекращение генерации импульсов в его клетках. Пауза, преввшающая $10-20$ секунд, ведёт к потере сознания. Развивается гипоксия головного мозга (синдром Морга́ньи-Адамса-Стокса). Основное лечение имплавтация кардиостимулятора
(iv) Блокада сердца - препятствие прохождению импульсов из синусового узла к желудочкам - вызывает брадикардию. Возникновение обмороков зависит от того, способны ли нижележащие отделы проводящей системы (например, АВ-узел) обеспе-

чить достаточную частоту сердечных сокращений, чтобы поддерживать кровообращение в сосудах головного мозга.
(б) Предсердно-желудочковый узел. При патологии синусно-предсердного узла его функция переходит к АВ-узлу (частота генерации импульсов -40-50 в минуту).
(i) Блокада атриовентрикулярного узла (АВ-блокада). При АВ-блокаде импульс из синусового узла не всегда может пройти к пучку Гйса и сократительному миокарду. Возникающую аритмию характеризует снижение частоты ритма желудочков по сравнению с ритмом предсердий, что может привести к обморокам.
(ii) Причины атрновентрикулярных блокад - инфаркт миокарда, миокардит, идиопатическое поражение проводящей системы. Блокада может наступить вследствие применения препаратов, оказывающих отрицательный дромотропный эффект на проводящую систему (сердечные гликозиды, антагонисты Ca^{2+} и β-адреноблокаторы).
(в) Предсердно-желудочковый пучок Ги́cа состоит из ствола, правой и левой ножек. Левая ножка распадается на переднюю и заднюю ветви. Скорость проведения по пучку Ги́са - $1-1,5 \mathrm{~m} / \mathrm{c}$ (в рабочих кардиомиоцитах возбуждение распространяется со скоростью $0,5-1 \mathrm{~m} / \mathrm{c}$), частота генерации импульсов -$30-40$ в минуту.
Блокады ножек пучка Ги́са. Полное прекращение проведения возбуждения по левой (или одновременно по её передней и задней ветвям) или правой ножке пред-сердно-желудочкового пучка.
(г) Волокна Пуркинье́. Скорость проведения импульса по волокнам Пуркинье́ -$2-4$ м / с, частота генерации импульсов $-20-30$ в минуту.
(д) Дополнительные пути
(i) Ве́нкебаха пучок начинается от синусно-предсердного узла, его волокна направляются в левое предсердие и к предсердно-желудочковому узлу (средний межузловой тракт).
(ii) Бахмама пучок начинается от синусно-предсердного узла, часть волокон расположена между предсердиями (межпредсердный пучок к ушку левого предсердия), часть волокон направляется к предсердно-желудочковому узлу (передний межузловой тракт).
(iii) Дже́ймса пучок соединяет одно из предсердий с атриовентикулярным соединением или проходит внутри этого соединения; по этому пучку возбуждение может преждевременно распространиться на желудочки.
(iv) Ке́нма пучок - аномальный пучок между левым предсердием и одним из желудочков.
Синдром Во́льфа-Па́ркинсома-Уа́йта. Цепь циркуляции возбуждения предсердия, АВ-узел, система Ги́са-Пуркинье́, миокард и пучок Ке́нта.
(e) Гетеротопные очаги возбуждения
(i) Экстраси́столы - преждевременные сокращения сердца, исходящие из предсердий, из AB -узла или желудочков, прерывают доминирующий, обычно синусовый ритм.
(ii) Пароксизмальная тахикарди́я (внезапно начинающиеся и внезапно прекращающиеся приступы тахикардии) возникает в результате активности гетеротопных очагов автоматизма или (чаще) патологической циркуляции волны возбуждения по миокарду.
(iii) Желудочковая тахикардия возникает при наличии гетеротопного очага автоматизма в желудочках сердца и (или) прн патологической циркуляции волны возбуждения по миокарду.
(ж) Аритмии - нарушения формирования импульса возбуждения или его проведения, проявляются нарушением ритма сердечных сокращений.

Содержание калия. Калий - основной катион внутриклеточной жидкости (примерно 3000 мэкв K^{+}). Внеклеточная жидкость содержит лишь около 65 мэкв. Соотношение внеклеточной и внутриклеточной концентраций калия - важная детерминанта электрической активности возбудимых мембран (капример, проводящей системы сердца).
Гиперкалиеми́я. При концентрации калия в сыворотке более 6,5 мэкв / л наблюдают мышечную слабость, парестезии, арефлексию, восходяший паралич, дыхательную недостаточность; брадикардию, переходящая в асистолию; замедление АВпроводимости, ведущее к полной AB -блокаде и фибрилляции желудочков.
Гипокалиеми́я. При снижении концентрации калия ниже 2,5 мэкв / л наблюдают недомогание, усталость, нервно-мышечные расстройства (например, слабость, парестезии, судороги, острый некроз скелетных мышц, паралич), желудочно-кишечные расстройства (запоры, непроходимость кишечника), проявления со стороны сердечно-сосудистой системы (ортостатическая гипотония, прогрессирование артериальной гипертензии, аритмии).
(3) Натриуретические пептиды - моцные гипотензивные факторы.
(a) Гены. Натриуретические пептиды кодируются 3 генами.
(i) ANP (108780, 1р36.2) кодирует атриопептин.
(ii) $B N P(600295,1 \mathrm{p} 36.2)$ кодирует $т . н . ~ н а т р и у р е т и ч е с к и и ̆ ~ ф а к т о р ~ м о з г а . ~$
(iii) CNP ($600296,2 q 24$-qter) кодирует натриуретический фактор типа С.
(6) Структура. Все натриуретические факторы - пептиды.
(i) α-Атриопептин (22 аминокислоты) и родственные ему пептиды с $M_{\text {т }}$ от 3000 до 13000 транслируются из общего предшественника.
(ii) Натриуретический фактор типа С - пептид из 22 аминокислот.
(в) Клетки-источники
(i) Атриопептин и т.н. натриуретнческий фактор мозга синтезируют кардиомиоциты правого предсердия, кардиомиоциты желудочков сердца у плода и в послеродовом периоде, кардиомиоциты желудочков сердца при его гипертрофии, а также некоторые нейроны ЦНС.
(ii) Натриуретический фактор типа \mathbf{C} синтезируется в мозге, а также клетками эндотелия кровеносных сосудов.
(г) Клетки-мишени:
(i) клетки почечных телец,
(ii) клетки собирательных трубочек почки,
(iii) клетки клубочковой зоны коры надпочечников,
(iv) ГМК сосудов.
(д) Рецепторы трёх типов для натриуретических факторов - мембранные белки, активирующие гуанилатциклазу, экспрессируются в ЦНС, сосудах, почке, коре надпочечника, плаценте. В почке синтезируется специфичная только для этого органа атриопептидаза (КФ 3.4.24.11).
(e) Функции натриуретических факторов - контроль объёма внеклеточной жидкости и гомеостаза электролитов.
(i) Альдостерон. Угнетение синтеза.
(ii) Ренин. Угнетение секреции.
(iii) Вазопрессин. Угнетение секреции.
(ж) Эффекты на ГМК сосудов

Артериолы. Нет эффекта.
Крупные сосуды. Сильное сосудорасширяющее воздействие.
Коронарные сосуды. Умеренная вазодилатация.
(4) Коронарные сосуды. Обе коронарные артерии отходят от основания аорты. Задняя стенка левого желудочка, некоторые отделы перегородки и бо́льшая часть правого желудочка кровоснабжаются правой коронарной артерией. Остальные отделы сердца получают кровь из левой коронарной артерии.
(a) Ишемическая болезнь сердца (ИБС) как проявление атеросклероза коронарных артерий. В основе ИБС лежит локальное сужение просвета крупной или среднего калибра коронарной артерии вследствие пролиферации гладкомышечных клеток внутренней оболочки (и́нтима) и отложения в ней липидов. В зоне первичного повреждения эндотелия развивается атеросклеротическая бляшка (рис. 10-10).
(i) Гладкомышечные клетки и́нтимы, пролиферирующие вследствие повреждения эндотелия.
(ii) Липиды - сложные эфиры и кристаллы холестерина в центре бляшки, окружённые гладкомышечными клетками.
(б) Распространённость и факторы риска развития ИБС. Смертность от ИБС составляет не менее $1: 50$ летальных случаев. Факторы риска развития ИБС.
(i) Возраст. Распространённость ИБС увеличивается с возрастом.
(ii) Пол. ИБС чаще встречают у мужчин (мужчины болеют в пять раз чаще женщин).
(iii) Гиперхолестеринемия. Заболеваемость ИБС прямо пропорциональна уровню общего холестерина сыворотки крови.
Транспорт холестерина в крови - см. главу 2 I А 1 в (2), гиперлипидемии см. главу 18.
(iv) Курение при прочих равных условиях повышает риск развития ИБС почти вдвое. Высокое содержание окиси углерода в крови курильщика может повреждать эндотелий коронарных сосудов. У курящих усиливается адгезивность тромбоцитов, и возрастает риск коронаротромбоза.
(v) Гипертензия. Чем выше систолическое или диастолическое давление, тем больше вероятность развития ИБС.
(vi) Сахарнын̆ диабет повышает риск возникновения ИБС на 50% у мужчин и на $100 \%-$ у женщин.

- Adventitia

Рис. 10-10. Схема атеросклеротической бляшки. Фиброзная капсула может вызывать клинические симптомы за счёт своих размеров, распада и изъязвления. Некротический центр также вызывает клинические проявления благодаря своим размерам и тромбопластическому потенциалу (по: Braunwald E. Heart Disease, 2 издание. Philadelphia, WB Saunders, 1984, c.1186)
(vii) Наследственность. Существует семейная предрасположенность к развитию ИБС.
(viii) Гормональные контрацептивы. Их приём повышает риск развития ияфаркта миокарда.
(в) Теории атерогенеза
(i) Теория повреждений и накопления основана на признании повреждаюшего действия различных факторов (например, гипертензия или гиперхолестеринемия) на эндотелий сосудов. Начинаются пролиферация гладкомышечных клеток и миграция макрофагов в сосудистую стенку. Через повреждённый эндотелий в и́нтиму сосуда проникают липиды и холестерин, формирующие атеросклеротическую бляшку. Образование бляшки стенозирует сосуд, индуцирует активацию тромбоцитов и формирование тромбов, что ведёт к ишемии миокарда и его некрозу (стенокардия и инфаркт миокарда).
(ii) Неопластическая теория. Имеются сведения о возможном моноклональном происхождении гладкомышечных клеток атеросклеротических бляшек. По этой теории, повреждение стенки артерий - стимул, запускающий пролиферацию клеток.
в. Эпикард - висцеральный листок перикарда, образован тонким слоем соединительной ткани, срастающейся с миокардом. Свободная поверхность покрыта мезотелием. Перикард. Его основу составляет соединительная ткань с многочисленными эластическими волокнами. Поверхность перикарда выстлана мезотелием.
3. Регуляция функций сердца осуществляется вегетативной двигательной иннервацией, гуморальными факторами и автоматией сердца.
a. Иннервация. Работу сердца контролируют сердечные центры продолговатого мозга и моста через парасимпатические и симпатические волокна, которые влияют на частоту сокращений (хронотропное действие), силу сокращений (инотропное действие) и скорость предсердно-желудочкового проведения (дромотропное действие). Холинергические и адренергические (преимущественно безмиелиновые) волокна образуют в стенке сердца несколько нервных сплетений, содержащих внутрисердечные ганглии. Скопления ганглиев в основном сосредоточены в стенке правого предсердия и в области устьев полых вен. В целом стимуляция симпатических нервов увеличивает частоту спонтанной деполяризации мембран водителей ритма, облегчает проведение импульса в волокнах Пуркинье́ и увеличивает частоту и силу сокращения рабочих кардиомиоцитов. Стимуляция парасимпатических нервов, наоборот, уменьшает частоту генерации импульсов пейсмейкерами, снижает скорость проведения импульса в волокнах Пуркинье́ и уменьшает силу и частоту сокращения миокарда.
(1) Парасимпатическая иннервация. Преганглионарные парасимпатические волокна для сердца проходят в составе блуждающего нерва с обеих сторон. Волокна правого блуждающего нерва иннервируют правое предсердие и образуют густое сплетение в области синусно-предсердного узла. Волокна левого блуждающего нерва подходят преимущественно к предсердно-желудочковому узлу. Поэтому правый блуждающий нерв влияет главным образом на частоту сокращений, а левый - на предсердно-желудочковое проведение. Желудочки имеют менее выраженную парасимпатическую иннервацию.
(a) Внутрисердечные нейроны почти все холинергические (парасимпатические). На них, а также на МИФ-клетках, заканчиваются терминали холинергических аксонов блуждающего нерва. Отростки нейронов внутрисердечных ганглиев также вступают в контакт с МИФ-клетками.
(б) Эффекты. Под действием парасимпатических волокон сила сокращений предсердий уменьшается (отрицательный инотропный эффект), снижается частота

сокращений сердца (отрицательный хронотропный эффект) и увеличивается предсердно-желудочковая задержка проведения - отрицательный дромотропный эффект (вплоть до полной преходящей предсердно-желудочковой блокады).
(2) Симпатическая иннервация. Преганглионарные симпатические волокна для сердца идут от боковых рогов верхних грудных сегментов спинного мозга. Постганглионарные адренергические волокна образованы аксонами нейронов ганглиев симпатической нервной цепочки (звёздчатый и отчасти верхний шейный симпатические узлы). Они подходят к органу в составе нескольких сердечных нервов и равномерно распределяются по всем отделам сердца. Терминальные ветви пронизывают миокард, сопровождают коронарные сосуды и подходят к элементам проводящей системы. Миокард предсердий имеет более высокую плотность адренергических волокон. Каждый пятый кардиомиоцит желудочков снабжается адренергической терминалью, заканчивающейся на расстоянии 50 мкм от плазмолеммы кардиомиоцита.
Эффекты. Под действием симпатических волокон сила сокращений предсердий и желудочков увеличивается (положительный инотропный эффект), возрастает частота сокращений сердца (положительный хронотропный эффект), укорачивается интервал между сокращениями предсердий и желудочков (положительный дромотропный эффект).
(3) Афферентная иннервация. Чувствительные нейроны ганглиев блуждающих нервов и спинномозговых узлов ($\mathrm{C}_{8}-\mathrm{Th}_{6}$) образуют свободные и инкапсулированные нервные окончания в стенке сердца. Афферентные волокна проходят в составе блуждающих и симпатических нервов.

б. Гуморальная регуляция

(1) Кардиомиоциты имеют α_{1}-адренорецепторы, β-адренорецепторы, м-холинорецепторы.
(a) α_{1}-Адренорецепторы. Поддержание силы сокращения.
(б) β-Адренорецепторы. Увеличение частоты и силы сокращения.
(в) м-Холинорецепторы. Уменьшение частоты и силы сокращения.
(2) Коронарные сосуды. Симпатические влияния почти всегда приводят к увеличению коронарного кровотока. α_{1}-Адренорецепторы и β-адренорецепторы неравномерно распределены по коронарному руслу.
(a) α_{1}-Адренорецепторы присутствуют в ГМК сосудов крупного калибра, их стимуляция вызывает сужение артериол и вен сердца.
(б) β-Адренорецепторы чаще встречаются в мелких коронарных артериях. Стимуляция β-адренорецепторов расширяет артериолы.

ПРЕПАРАТЫ

А. Артерия и вена (рис. 10-11, 10-12). Артерия имеет зияющий круглый или овальный просвет, в её стенке легко различимы все три оболочки: внутренняя - t. intima, средняя - t. media, наружная - t. adventitia. Просвет вен спавшийся, имеет щелевидную неправильную форму. 1. Артерия мышечного типа (рис. 10-12). Во внутренней оболочке тонкий эндотелий (видны ядра клеток) находится на слабо выраженном подэндотелиальном слое, состоящем из рыхлой волокнистой соединительной ткани. На границе внутренней и средней оболочек видна толстая волнистая тёмноокрашенная линия: внутренняя эластическая мембрана. Средняя оболочка толстая, состоит из прилегающих друг к другу ГМК, ориентированных циркулярно. Хорошо видны удлинённые ядра. Между ГМК находятся многочисленные тёмноокрашенные эластические волокна. Они волнообразно изогнуты и имеют циркулярную ориентацию. Наружная оболочка состоит из волокнистой соединительной ткани.

Рис. 10-11. Артерия и сопровождающая вена в составе сосудисто-нервного пучка [нз Voss H, 1957]

Рис. 10-12. Строение стенки артерии и вены [из Junqueira LC, Carneiro J, 1991]
2. Вена среднего калибра (рис. 10-12). На границе с просветом вены видны ядра клеток эндотелия, находящегося на прослойке рыхлой волокнистой соединительной ткани. Средняя оболочка тонкая. В ней видны циркулярно ориентированные ГМК, разделённые прослойками соединительной ткани. Наружная оболочка построена из пучков коллагеновых волокон, эластических волокон и ГМК преимущественно продольного направления.
Б. Артерия эластического типа (рис. 10-13). Стенка артерии эластического типа (аорта) построена из 3 оболочек. Во внутренней оболочке видны ядра эндотелиальных клеток. Слой Ла́нгханса состоит из рыхлой волокнистой соединительной ткани. На границе внутренней и средней оболочек располагается мощный слой эластических волокон, ориентированных циркулярно и продольно. Толстая средняя оболочка состоит из нескольких десятков располагающихся циркулярно эластических окончатых мембран, между которыми находятся многочисленные войлокообразно переплетающиеся эластические волокна и ГМК. В наружной оболочке среди пучков коллагеновых и эластических волокон видны скопления жировых клеток и кровеносные сосуды (vasa vasorum).
В. Стенка сердца. Эндокард обращён в полость сердца и окрашен значительно темнее других оболочек, содержит эндотелий, внутренний соединительнотканный слой, мышечно-эластический слой, наружный соединительнотканный слой. Миокард, наиболее толстая оболочка, построен из поперечнополосатой мышцы сердечного типа. Между волокнами сердечной мышцы находятся тонкие прослойки рыхлой волокнистой соединительной ткани с многочисленными капиллярами. В более толстых прослойках соединительной ткани видны сосуды большего калибра. Волокна сердечной мышцы ориентированы в различных направлениях. Эпикард с поверхности покрыт однослойным плоским эпителием серозных оболочек - мезотелием (на препарате видны ядра его клеток). Под мезотелием находится волокнистая соединительная ткань с большим количеством жировых клеток, часто образующих значительные скопления. Здесь же проходят кровеносные сосуды и нервные стволы. Волокна Пуркинье легко найти на границе эндо- и миокарда.

Рис. 10-13 Аорта. Поверхность внутренней оболочки выстлана эндотелиальными клетками. Подэндотелиальный слой содержит коллагеновые и эластические волокна. Здесь встречаются фибробласты и клетки, напоминающие по строению ГМК. С возрастом и особенно при атеросклерозе внутренняя оболочка утолщается, а ГМК накапливают липиды. Мощная средняя оболочка содержит окончатые эластические мембраны, между которыми расположены коллагеновые волокна и отдельные пучки ГМК. В соединительной ткани наружной оболочки проходят нервные волокна и vasa vasorum. Часть vasa vasorит проникает в наружные отделы средней оболочки [из: Кирпииниковой ЕС, Лееинсона ЛБ, 1960]
Г. Гемокапилляр (рис. 10-14). Под малым увеличением среди элементов рыхлой волокнистой соединительной ткани видна сеть кровеносных капилляров. В их просвете находятся эритроциты. Просвет капилляров выстлан эндотелием (видны ядра клеток). Слой эндотелия находится на плохо различимой базальной мембране. Снаружи к стенке капилляра примыкают перициты (адвентициальные клетки).

Рис. 10-14. Капилляры [из Stöhr Pet al, 1955] клеток

АитеРАТУРА

Ванков ВН Строение вен. М.: Медицина, 1974
Кантен М, Жене Ж Сердце как эндокринная железа. В мире науки, 1986, №4, с.40-46
Расмуссен Г Циркуляция кальция и внутриклеточная передача внешних сигналов. B мире науки, 1989, №12, c. 36 -43

Breemen C, Saida K Cellular mechanisms regulating [Ca ${ }^{2+}$] in smooth muscle. Ann. Rev. Physiol., 1989, 51: 315-329 Campbell JH, Campbell GR Endothelial cell influences on vascular smooth muscle phenotype. Ann. Rev. Physiol., 1986, 48: 295-306
Ganong WF The brain renin-angiotensin system. Ann. Rev. Physiol., 1984, 46. 17-31
Goldstein GW, Betz AL The blood-brain barrier. Sci. Amer., 1986, 255: 74-83
Folkman J, Klagsbrun M Angiogenic factors. Science, 1987, 235: 442-447
Nakache M et al The mucosal vascular adressin is a tissue-specific endothelial cell adhesion molecule for circulating lymphocytes. Nature, 1989, 337: 179-181
Olson LG, Saunders NA Structure and function of the carotid body. Austral. and N.Z. J. Med., 1985, 15: 775-781
Standaert DG, Saper CB, Needleman P Atriopeptin: potent hormone and potential neuromediator. Trends Neurosci., 1985, 8: 509-511

ВОПРОСЫ

Пояснение. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждения, наиболее соответствующее каждому случаю:

1. Для артерий мышечного типа верно всё, KPOME:
(A) ГМК в средней оболочке ориентированы спирально
(Б) наружная эластическая мембрана выражена сильнее внутренней
(B) в адвентиции присутствуют многочисленные нервные волокна и окончания
(Г) контролируют интенсивность кровотока в органах
(Д) по сравнению с сопровождающими венами содержат больше эластических волокон
2. Для артерий эластического типа верно всё, КРОМЕ:
(А) группы ГМК присутствуют в субэндотелиальном слое
(Б) на границе внутренней и средней оболочек расположен мощный слой эластических волокон
(B) субэндотелиальный слой образован плотной волокнистой оформленной соединительной тканью
(Г) в средней оболочке расположены окончатые эластические мембраны
(Д) ГМК в средней оболочке синтезируют эластин и коллаген
3. Наружная оболочка аорты. Верно всё, КРОМЕ:
(A) пучки эластических и коллагеновых волокон ориентированы продольно или по спирали
(Б) присутствуют vasa vasorum
(B) имеет нервные волокна и окончания
(Г) содержит клетки волокнистой соединительной ткани
(Д) покрыта мезотелием
4. Артериола. Верно всё, КРОМЕ:
(A) внутренняя эластическая мембрана отделяет эндотелиальные клетки от ГМК
(Б) сужение просвета происходит за счёт сокращения IMK
(B) ГМК имеют рецепторы ангиотензина II
(Г) vasa vasorum кровоснабжают наружную оболочку
(Д) артериолы переходят в капилляры
5. Для вены (по сравнению с сопровождающей артерией) верно всё, KPOME:
(A) имеет бо́льший диаметр
(Б) имеет зияющий просвет
(B) средняя оболочка тоньше
(Г) внутренняя эластическая мембрана выражена слабее
(Д) стенка тоньше
6. Микроциркуляторное русло. Верно всё, KPOME:
(A) прекапиллярные сфинктеры контролируют интенсивность капиллярного кровотока
(Б) объём кровотока всего русла определяет тонус ГМК артериол
(B) содержит прекапиллярные артериолы и посткапиллярные венулы
(Г) стенка артерио-венозного анастомоза не содержит ГМК
(Д) артериовенозные анастомозы связывают мелкие артерии и вены
7. Капилляры с фенестрированным эндотелием. Верно всё, КРОМЕ:
(A) присутствуют в эндокринных железах
(Б) фенестры - специализированные контакты между эндотелиальными клетками
(B) фенестры облегчают транспорт веществ через эндотелий
(Г) пиноцитозные пузырьки транспортируют метаболиты через эндотелий
(Д) имеют сплошную базальную пластинку

8. Капилляры. Верно всё, КРОМЕ:

(A) в организме постоянно происходит их образование
(Б) содержат перициты
(B) капилляры с непрерывным эндотелием имеют сплошную базальную мембрану
($\mathrm{\Gamma}$) капилляры синусоидного типа расположены в кроветворных органах
(Д) входящие в их состав ГМК регулируют АД

9. Гематотимический барьер образован:

(A) капиллярами с непрерывным эндотелием и прерывистой базальной мембраной
(Б) синусоидными капиллярами
(B) капиллярами с фенестрированным эндотелием
(Г) капиллярами с непрерывным эндотелием и сплошной базальной мембраной
(Д) капиллярами, содержащими эндотелиальные клетки с порами
10. Гематоэнцефалический барьер образован:
(A) непрерывным эндотелием и ножками отростков олигодендроглиоцитов
(Б) ножками отростков астроцитов
(B) непрерывным эндотелием
(Г) фенестрированным эндотелием
(Д) эндотелием капилляров синусоидного типа
11. Эндотелиальные клетки. Верно всё, КРОМЕ:
(A) в эндокарде являются частью наружного соединительнотканного слоя
(Б) содержат пиноцитозные пузырьки
(B) обновляющаяся клеточная популяция
(Г) связаны с базальной мембраной при помощи полудесмосом
(Д) имеют рецепторы ангиогенных факторов
12. Эндотелиальные клетки. Верно всё, КРОМЕ:
(A) происходят из мезенхнмы
(Б) в мозге связаны при помощи плотных контактов
(B) образуют гематоэнцефалический барьер
(Г) составляют растущую клеточную популяцию
(Д) имеют рецепторы факторов роста фибробластов и трансформирующего фактора роста β
13. ГМК сосудистой стенки. Верно всё, КРОМЕ:
(A) в гемокапиллярах имеют симпатическую иннервацию
(Б) в мембрану встроены рецепторы гистамина
(B) экспрессируя синтетический фенотип, вырабатывают коллаген и эластин
(Г) расслабляются под действием оксида азота
(Д) являются мишенью фактора некроза опухолей
14. Сердце. Верно всё, КРОМЕ:
(A) снлу сокращения кардиомиоцитов усиливают катехоловые амины
(Б) миокард содержит проприорецепторы - нервно-мышечные веретёна
(B) кардиомиоциты не способны к репаративной регенерации
(Г) ацетилхолин урежает частоту сердцебнений
(Д) кардиомиоииты предсердий секретируют атриопептин
15. Вазодилатацию вызывают все перечисленные вещества, KPOME:
(A) брадикинина
(Б) вазоактивного интестинального пептида (VIP)
(B) гистамина
(Г) ангиотензина II
(Д) относящегося к кальцитониновому гену пептида

Полснение. Каждый из нижеприведённых и пронумерованных вопросов 16-24 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:
A - если правильны ответы 1, 2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны ответы $1,2,3$ и 4
16. Миокард:
(1) развивается из мезодермы
(2) промежуточные филаменты кардиомиоцитов образованы миозином
(3) кардиомиоциты волокон Пуркинье́ связаны при помощи десмосом и щелевых контактов
(4) секреторные кардиомиоциты входят в проводящую систему

17. Нижняя полая вена:

(1) не имеет клапанов, как и вены внутренних органов
(2) средняя оболочка содержит окончатые эластические мембраны
(3) в субэндотелиальном слое присутствуют ГМК
(4) наружная оболочка слабо развита
18. Стенка вены:
(1) наружная оболочка построена из волокнистой соединительной ткани
(2) в средней оболочке подкожных вен нижних конечностей много ГМК
(3) в наружной оболочке присутствуют многочисленные vasa vasorum
(4) в безмышечных венах отсутствует средняя оболочка
19. Синусоидные капилляры:
(1) образуют капиллярное русло красного костного мозга
(2) через щели между эндотелиальными клетками мигрируют клетки крови
(3) окружены прерывистой базальной мембраной
(4) эндотелиальные клетки имеют плоскую полигональную форму
20. Активация каких рецепторов приводит к выделению из эндотелиальных клеток расслабляющего фактора - окснда азота?
(1) м-Холинорецептора
(2) α_{2}-Адренорецептора
(3) Гистамина
(4) Серотонина

21. Эндотелий:

(1) промежуточные филаменты образованы виментином
(2) при тромбозе сосуда выделяет оксид азота
(3) входит в состав эндокарда
(4) питается за счёт сосудов, прорастающих через базальную мембрану
22. ГМК артериол скелетной мышцы:
(1) тонкие миофиламенты саркомеров образованы актином
(2) имеют рецепторы ангиотензина II
(3) получают двигательную иннервацию от мотонейронов передних рогов спинного мозга
(4) происходят из мезенхимы
23. Сердце:
(1) эпикард покрыт мезотелием
(2) волокна Пуркинье́ состоят из рабочих кардиомиоцитов
(3) симпатические нервные волокна оказывают положительный хронотропный эффект
(4) агонисты β-адренорецепторов уменьшают силу сердечного сокращения
24. Атриопептин:
(1) синтезируется в кардиомиоцитах
(2) клетки, синтезирующие альдостерон, - мишени натриуретического фактора
(3) рецепторы экспрессируют нейроны ЦНС
(4) вызывает расширение капилляров

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - Б

Артерии мышечного типа обладают выраженной способностью к изменению просвета, поэтому их относят к распределительным артериям, контролирующим интенсивность кровотока между органами. ГМК, идущие по спирали, регулируют величину просвета сосуда. Внутренняя эластическая мембрана расположена между внутренней и средней оболочками. Наружная эластическая мембрана, разделяющая среднюю и наружную оболочки, как правило, менее выражена. Наружная оболочка представлена волокнистой соединительной тканью; имеет, как и в других сосудах, многочнсленные нервные волокна и окончания. Сравнительно с сопровождающими венами артерия содержит больше эластических волокон, поэтому её стенка эластичнее.

2. Правильный ответ - В

Субэндотелиальный слой артерии эластического типа образован рыхлой волокнистой неоформленной соединительной тканью. Здесь присутствуют эластические и коллагеновые волокна, фибробласты, группы продольно ориентированных ГМК. Последнее обстоятельство необходимо учитывать при рассмотрении механизма развития атеросклеротического повреждения сосудистой стенки. На границе внутренней и средней оболочек расположен мощный слой эластических волокон. В средней оболочке присутствуют многочисленные окончатые эластические мембраны. Между эластическими мембранами располагаются ГМК. Направление хода ГМК - по спирали. ГМК артерий эластического типа специализированы для синтеза эластина, коллагена и компонентов аморфного межклеточного вещества.

3. Правильный ответ - Д

Мезотелий покрывает свободную поверхность эпикарда и выстилает перикард. Наружная (адвентициальная) оболочка кровеносных сосудов (аорты в т.ч.) содержит пучки коллагеновых и эластических волокон, ориентированных продольно или идущих по спирали; мелкие кровеносные и лимфатические сосуды, а также миелиновые и безмиелиновые нервные волокна. Vasa vasorum кровоснабжают наружную оболочку и наружную треть средней оболочки. Предполагается, что ткани внутренней оболочки и внутренних двух третей средней оболочки питаются за счёт диффузии веществ из крови, находящейся в просвете сосуда.

4. Правильный ответ - Г

Артерии мышечного типа переходят в короткие сосуды - артериолы. Стенка артериолы состоит из эндотелия, нескольких слоёв циркулярно ориентированных ГМК в средней оболочке и наружной оболочки. Эндотелий отделён от ГМК внутренней эластической мембраной. В наружной оболочке артериолы отсутствуют vasa vasorum. Здесь имеются периваскулярные соединительнотканные клетки, пучки коллагеновых волокон, безмиелиновые нервные волокна. Изменение величины просвета сосуда осуществляется за счёт изменения тонуса ГМK, имеющих рецепторы вазодилататоров и вазоконстрикторов, включая рецепторы ангиотензина II. Самые мелкие артериолы (терминальные) переходят в капилляры. Терминальные артериолы содержат продольно ориентированные эндотелиальные клетки и вытянутые ГМК.

5. Правильный ответ - Б

Вены имеют больший диаметр, чем одноимённые артерии. Их просвет, в отличие от артерий, не зняет. Стенка вены тоньше. Субэндотелиальный слой внутренней оболочки содержит ГМК. Внутренняя эластическая мембрана выражена слабо и часто отсутствует. Средняя оболочка вены тоньше, чем одноимённой артерии. В средней оболочке присутствуют циркулярно ориентированные ГМК, коллагеновые и эластические волокна. Количество ГМК в средней оболочке вены существенно меньше, чем в средней оболочке сопровождающей её артерии. Исключение составляют вены нижних конечностей. Эти вены содержат значительное количество ГМК в средней оболочке.

6. Правильный ответ - Г

Мнкроциркуляторное русло включает: терминальные артериолы (метартериолы), анастомозирующую сеть капилляров и посткапиллярные венулы. В местах отделення капилляров от метартериолы имеются прекапиллярные сфинктеры, контролирующие локальный объём крови, проходящей через истинные капилляры. Объём же крови, проходящей через терминальное сосудистое русло в целом, определяется тонусом ГМК артериол. В микроциркуляторном русле присутствуют артериовенозные анастомозы, связывающие артериолы непосредственно с венулами, или мелкие артерии с мелкими венами. Стенка

сосудов анастомоза богата ГМК. Артериовенозные анастомозы в большом количестве присутствуют в некоторых участках кожи, где они играют важнук роль в терморегуляции.

7. Правильный ответ - Б

Стенка капилляра образована эндотелием, его базальной мембраной и перицитами. Капилляры с фенестрированным эндотелием присутствуют в капиллярных клубочках почки, эндокринных железах, ворсинках кишки, в экзокринной части поджелудочной железы. Фенестра - истончённый участок эндотелиальной клетки диаметром 50-80 нм. Предполагается, что фенестры облегчают транспорт веществ через эндотелий. В цитоплазме эндотелиальных клеток содержатся пиноцитозные пузырьки, участвующие в транспорте метаболитов между кровью и тканями. Базальная мембрана у капилляра с фенестрированным эндотелием сплошная.

8. Правильный ответ - Д

В стенке капилляра имеются эндотелиальные клетки и перициты, но отсутствуют ГМК. Перициты клетки, содержащие сократительные белки (актин, миозин). Вероятно участие перицита в регуляции просвета капилляра. Капилляры с непрерывным и фенестрированным эндотелием имеют сплошную базальную мембрану. Для синусоидов характерно наличие щелей между эндотелиальными клетками и в базальной мембране, что позволяет клеткам крови свободно проходить сквозь стенку такого капилляра. Капилляры синусоидного типа присутствуют в кроветворных органах. В организме постоянно происходит образование новых капилляров.

9. Правильный ответ - Г

Гематотимический барьер образован капиллярами с непрерывным эндотелием и сплошной базальной мембраной. Между эндотелиальными клетками имеются плотные контакты, в цитоплазме мало пиноцитозных пузырьков. Стенка такого капилляра непроницаема для веществ, проходящих через стенку обычных капилляров. Капилляры с фенестрированным эндотелием и синусоиды барьеров не образуют, поскольку содержат фенестры и поры в эндотелии, щели между эндотелиальными клетками и в базальной мембране, облегчающие прохождение веществ сквозь стенку капилляра. Капилляров с непрерывным эндотелием и прерывистой базальной мембраной не найдено.

10. Правильный ответ - B

Основа гематоэнцефалического барьера - непрерывный эндотелий. Эндотелиальные клетки связаны при помощи непрерывных цепочек плотных контактов, что не позволяет проникать в мозг многим веществам. Снаружи эндотелий покрыт сплошной базальной мембраной. К базальной мембране примыкают ножки астроиитов, почти полностью охватывая капилляр. Базальная мембрана и астроциты не являются компонентами барьера. Олигодендроциты связаны с нервными волокнами и формируют миелиновую оболочку. Синусоидные капилляры присутствуют в кроветворных органах. Капилляры с фенестрированным эндотелием характерны для почечных телец, ворсинок кишечника, эндокринных желёз.

11. Правильный ответ - A

В эндокарде выделяют три слоя: внутренний соединительнотканный, мышечно-эластический и наружный соединительнотканный, переходящий в соединительную ткань миокарда. Внутренний соединительнотканный слой - аналог субэндотелиального слоя и́нтимы кровеносных сосудов, образован рыхлой соединительной тканью. Этот слой покрыт эндотелием со стороны поверхности, обращённой в полость сердца. Между эндотелием и омывающей его кровью происходит обмен веществ. О его активности говорит наличие большого количества пиноцитозных пузырьков в цитоплазме эндотелиальных клеток. Клетки расположены на базальной мембране и связаны с ней полудесмосомами. Эндотелий - обновляющаяся клеточная популяция. Его клетки - мишени многочисленных ангиогенных факторов, следовательно, содержат их рецелторы.

12. Іравильный ответ - Г

Эндотелиальнье клетки происходят из мезенхимы. Они способны к пролиферации и составляют обновляющуюся клеточную популяцию. Эндотелиальные клетки синтезируют и секретируют ряд факторов роста и цитокинов. С другой стороны, они сами являются мишенями факторов роста и цитокинов. Например, митозы эндотелиальных клеток вызывает щелочной фактор роста фибробластов (bFGF). Цитокины макрофагов и Т-лимфоцитов (трансформирующий фактор роста β [TGFß], ИЛ-1 и γ-ИФН) угнетают пролиферацию эндотелиальных клеток. Эндотелий капилляров мозга является основой гематоэнцефалического барьера. Барьерная функция эндотелия выражается в наличии обширных плотных контактов между клетками.

13. Правильный ответ - A

Функциональное состояние ГМК контролируют многочисленные гуморальные факторы, в т.ч. фактор некроза опухолей, стимулирующий пролиферацию клеток; гистамин, вызывающий расслабление ГМК и повышение проницаемости стенки сосудов. Оксид азота, выделяемый эндотелиальными клетками, вазодилататор. ГМК, экспрессирующие синтетический фенотип, синтезируют компоненты межклеточного вещества (коллаген, эластин, протеогликаны), цитокины и факторы роста. Гемокапилляры не имеют ГМК и, значит, симпатической иннервации.

14. Правильный ответ - Б

Миокард не содержит нервно-мышечных веретён, они присутствуют исключительно в скелетной мышце. Кардиомиоциты лишены способности к пролиферации (в отличие от ГМК сосудов). Кроме того, в сердечной мышечной ткани отсутствуют малодифференцированные камбиальные клетки (подобные клет-кам-сателлитам скелетной мышечной ткани). Таким образом, регенерация кардиомиоцитов невозможна. Под действием катехоловых аминов (стимуляция симпатических нервных волокон) сила сокращений предсердий и желудочков увеличивается, возрастает частота сокращений сердца, укорачивается интервал между сокращениями предсердий и желудочков. Ацетилхолин (парасимпатическая иннервация) вызывает снижение силы сокращений предсердий и частоты сокращений сердца. Кардиомиоциты предсердий секретируют атриопептин (натриуретический фактор) - гормон, контролирующий объём внеклеточной жидкости и гомеостаз электролитов.

15. Правильный ответ - Г

Величина просвета сосуда регулируется за счёт сокращения или расслабления присутствуюших в его стенке ГМК. ГМК имеют рецепторы к многим веществам, действующим как вазоконстрикторы (сокращение ГМК) и как вазодилататоры (расслабление ГМК). Так, вазодилатацию вызывают атриопептин, брадикинин, гистамин, VIP, простагландины, оксид азота, относящиеся к кальцитониновому гену пептиды. Ангиотензин II - вазоконстриктор.

16. Правильный ответ - Б

Миокард развивается из миоэпикардиальной пластинки - утолщённого участка висцерального листка спланхнотома, т.е. имеет мезодермальное происхождение. Промежуточные филаменты кардиомиоцитов состоят из десмина - белка, характерного для мышечных клеток. Кардиомиоциты волокон Пуркинье́ связаны десмосомами и многочисленными щелевыми контактами, обеспечивающими высокую скорость проведения возбуждения. Секреторные кардиомиоциты, находящиеся преимущественно в правом предсердии, вырабатывают натриуретические факторы и к проводящей системе отношения не имеют.

17. Правильный ответ - Б

Полые вены, а также вены головного мозга и его оболочек, внутренних органов, подчревные, подвздошные и безымянные клапанов не имеют. Нижняя полая вена - сосуд мышечного типа. Внутренняя и средняя оболочки выражены слабо, тогда как наружная развита хорошо и по толщине превышает внутреннюю и среднюю в несколько раз. В субэндотелиальном слое присутствуют ГМК. В средней оболочке имеются циркулярно расположенніхе пучки ГМК; окончатые эластические мембраны отсутствуют. Наружная оболочка нижней полой вены содержит продольно ориентированные пучки ГМК.

18. Правильный ответ - Д

Подкожные вены нижних конечностей относятся к мышечным венам. Средняя оболочка этих вен хорошо развита и содержит продольно лежащие пучки ГМК во внутренних слоях и циркулярно ориентированные ГМК в наружных слоях. ГМК также образуют продольные пучки и в наружной оболочке. Последняя состоит из волокнистой соединительной ткани, в которой присутствуют нервные волокна и vasa vasorum. Vasa vasorum у вен значительно многочисленнее, чем у артерий, и могут достигать интимы. Большинство вен имеет клапаны, образованные складками йнтимы. Основу створок клапана составляет волокнистая соединительная ткань. В области фиксированного края клапана располагаются пучки ГМК. Средняя оболочка отсутствует в безмышечных венах головного мозга, мозговых оболочек, сетчатки глаза, трабекул селезёнки, костей, в мелких венах внутренних органов.

19. Правильный ответ - Д

Синусоидные капилляры образуют капиллярное русло красного костного мозга, печени, селезёнки. Эндотелиальные клетки уплощены и имеют вытянутую полигональную форму, содержат микротрубоч-

ки, филаменты, образуют микроворсинки. Между клетками имеются щели, через которые могут мигрировать клетки крови. Базальная мембрана также содержит различные по размерам щелевидные отверстия и может отсутствовать вообще (синусоиды печени).

20. Правильный ответ - Д

Плазматическая мембрана эндотелиальных клеток содержит рецепторы гистамина, серотонина, м-холинорецепторы, α_{2}-адренорецепторы. Их активация приводит к высвобождению из эндотелия фактора вазодилатации - окиси азота. Её мишень - расположенные поблизости ГМК. В результате расслабления ГМК просвет сосуда увеличивается.

21. Правильный ответ - A

Эндотелий входит в состав эндокарда, выстилая его со стороны поверхности, обращённой в полость сердца. Эндотелий лишён кровеносных сосудов и получает питательные вещества непосредственно из омывающей его крови. Как и у других клеточных типов мезенхимного происхождения, промежуточные филаменты эндотелиальных клеток состоят из виментина. Эндотелий участвует в восстановлении кровотока при тромбозе. Из агрегированных тромбоцитов в составе тромба выделяются АДФ и серотонин. Они взаимодействуют со своими рецепторами в плазматической мембране эндотелиальных клеток (пуринергический рецептор АДФ и рецептор серотонина). Со своим рецептором в эндотелиальной клетке взаимодействует и тромбин - белок, образующийся при свёртывании крови. Воздействие этих агонистов на эндотелиальную клетку стимулирует секрецию расслабляющего фактора - оксида азота.

22. Правильный ответ - B

ГМК артериол скелетной мышцы, как и ГМК всех сосудов, имеют мезенхимное происхождение. ГМК, экспрессирующие сократительный фенотип, содержат многочисленные миофиламенты и отвечают на воздействие вазоконстрикторов и вазодилататоров. Так, ГМК артериол скелетной мышцы имеют рецепторы ангиотензина II, вызывающего сок̆ращение ГМК. Миофиламенты в этих клетках не организованы по типу саркомеров. Сократительный аппарат ГМК образован стабильными актиновыми и подвергающимися сборке и разборке миозиновыми миофиламентами. ГМК артериол иннервированы нервными волокнами вегетативного отдела нервной системы. Сосудосуживающий эффект реализуется при помощи норадреналина - агониста α-адренорецепторов.

23. Правильный ответ - Б

Эпикард образован тонким слоем волокнистой соединительной ткани, плотно срастающейся с миокардом. Свободная поверхность эпикарда покрыта мезотелием. Стенка сердца получает симпатическую и парасимпатическую иннервацию. Симпатические нервные волокна оказывают положительный хронотропный эффект, агонисты β-адренорецепторов увеличивают силу сердечного сокращения. Волокна Пуркинье́ входят в состав проводящей системы сердца и передают возбуждение на рабочие кардиомиоциты.

24. Правильный ответ - A

Атриопептин - натриуретический пептид, его синтезируют кардиомиоциты предсердий. Мишени клетки почечных телец, клетки собирательных трубочек почки, клетки клубочковой зоны коры надпочечников, ГМК сосудов. Рецепторы трёх типов для натриуретических факторов - мембранные белки, активирующие гуанилатциклазу, экспрессируются в ЦНС, сосудах, почке, коре надпочечника, плаценте. Атриопептин угнетает образование альдостерона клетками клубочковой зоны коры надпочечников и способствует расслаблению ГМК стенки сосуда. На просвет капилляров не оказывает влияния, т.к. капилляры не содержат ГМK.

Иммунная защита

I. ОСНОВНЫЕ ПОНЯТИЯ

А. Антиген и антитело

1. Антиген (Аг) - вещество, несущее признаки генетически чужеродной информации. Аг можно определить как молекулу, распознаваемую иммунокомпетентными клетками как чужеродную (не свою). Иммуногены - Аг, вызывающие в организме иммунный ответ. Молекула иммуногена взаимодействует с AT или рецептором Т-лимфоцитов [глава 6.1 II Б 6 е].
a. Экзогенные иммуногены подвергаются эндоцитозу и расщеплению в Аг-представляющих клетках (I B 4). Далее фрагмент Аг, содержащий антигенную детерминанту (эпитоп) в комплексе с молекулой MHC II класса (I Б), транспортируется к плазматической мембране Аг-представляющей клетки, встраивается в неё и предъявляется CD4 ${ }^{+}$Т-лимфоцитам.
2. Эндогенные иммуногены - продукты собственных клеток организма. Чаще всего это вирусные белки, синтезируемые вирус-инфицированными клетками хозяина, и аномальные белки опухолевых клеток. Их антигенные детерминанты предъявляются CD8+ T -лимфоцитам в комплексе с молекулой MHC I класса (I Б).
3. Антитело (АТ) - гликопротеин, относящийся к классу Ig. AT специфически взаимодействует с комплементарным Аг. АТ существуют в миллионах разновидностей, и каждая молекула имеет уникальный участок связывания антигенной детерминанты. АТ синтезируют плазматические клетки в ходе гуморального иммунного ответа. Ig образуют один из основных классов белков крови, составляя 20% массы белка плазмы. Гены, кодирующие синтез известных классов Ig, расположены в хромосомах 2,14 и 22.
a. Структура (рис. 11-1). Молекула Ig состоит из двух лёгких цепей (L-цепи) и двух тяжёлых цепей (Н-цепи). В цепях различают вариабельную область (V-область) в N -концевой части и постоянную, или константную область (С-область). V-область у разных AT варьирует. V-области L- и H-цепей образуют Аг-связывающий центр, или Fab-фрагмент. Константная область молекулы Ig имеет Fc-фрагмент.
(1) Аг-связывающий центр образован вариабельными областями L- и H-цепей. C Аг-связывающим центром взаимодействует антигенная детерминанта (эпитоп) иммуногена.
(2) $\mathbf{F c}$-фрагмент определяет специфичность связывания молекулы Ig с клеткамиэффекторами (например, макрофаги, полиморфноядерные лейкоциты, тучные клетки), несущими на своей поверхности рецепторы Fс-фрагмента (рис. 11-2 и 11-4).
4. Kлассы Ig. В зависимости от структуры Н-цепей, выделено пять разных классов (изотипов) АТ - $\lg A, \operatorname{lgD}, \operatorname{lgE}, \operatorname{IgG}$ и \lg. .
(1) IgG - преобладающий класс АТ, производится в больших количествах при иммунном (вторичном) ответе и защищает ткани от бактерий, вирусов и токсинов. IgG усиливают фагоцитоз посредством опсонизации. Из всех Ig только IgG способны проходить через плацентарный барьер.

Рис. 11-1. Структура иммуноглобулина. Молекула состоит из двух идентичных тяжёлых (H) и двух идентичных лёгких (L) цепей. N -концевые области L - и H -цепей образуют два Аг-связывающих центpa . Fc -фрагмент молекулы взаимодействует со своим рецептором в мембране различных типов клеток (макрофаг, нейтрофил, тучная клетка)
(a) Фагоцитоз (рис. 11-2). IgG связываются с рецепторами Fc-фрагмента в мембране фагоцитирующих клеток, в результате чего фагоциты эффективнее поглощают и лизируют микроорганизмы.
(б) Плацентарный барьер (см. также главу 3 IX Г). На поверхности клеток трофобласта расположены рецепторы, связывающие Fc -фрагменты молекул материнских IgG. При этом связанные с рецепторами АТ сначала поглощаются путём опосредованного рецепторами эндоцитоза (глава 2 I B 3 в). Далее Ig транспортируются в клетке в составе окаймлённых пузырьков (глава 2 III А 7) и выводятся из клеток трофобласта, проходят через базальную мембрану трофобласта в соединительную ткань плода и попадают в капилляры плода. Переход Ig через плаценту обеспечивает передачу пассивного иммунитета от матери к плоду.
(2) IgM - пентамер, пять субъединиц соединены между собой дисульфидными связями. Единственная J-цепь, связанная дисульфидными мостиками с тяжёлыми цепями, инициирует сборку пентамера. $\operatorname{Ig} M$ - первый класс AT, продуцируемых развивающимися B-клетками при первичном попадании Ar в организм. Большая молекула IgM легко активирует комплемент и служит как опсонин при фагоцитозе. Многие АТ против грамотрицательных бактерий относятся к $\lg M$.
(3) IgA - основной класс АТ в секретах (слюна, слёзы, молоко). Выделяется на поверхность слизистых оболочек, где и взаимодействует с Аг (рис. 11-3). Следовательно, IgА участвует в защитной функции организма, укрепляя барьер в слизистой оболочке пищеварительного тракта, дыхательных, половых и мочевыделительных путей. Молекула IgА в составе секрета - димер, содержащий одну Ј-цепь и дополнительную полипептидную цепь, называемую секреторным компонентом. Этот компонент синтезирует эпителиальная клетка, на поверхность кото-

Рис. 11-2. Участие IgG в фагоцитозе Бактерия, покрытая молекулами IgG эффективно фагоцитируется макрофагом или нейтрофилом. Fab-фрагменты IgG связываются с антигенными детерминантами на поверхности бактерии, после чего те же молекулы IgG своими Fc -фрагментами взаимодействуют с рецепторами Fc -фрагментов, расположенными в плазматической мембране фагоцита, и активируют фагоцитоз [из Alberts B et al, 1983]

Рис. 11-3. Транспорт и секреция IgA Молекулы IgA переносятся через эпителиальную клетку во внешнюю среду. Fc-фрагмент IgA взаимодействует со своим рецептором в мембране базальной части клетки. Образовавшийся комплекс проникает в клетку путём опосредованного рецепторами эндоцитоза. IgA отщепляется от рецептора и секретируется через апикальную часть эпителиальной клетки [из Alberts Bet al, 1983]

рой и выделяется димер. Вероятно, секреторный компонент участвует не только в связывании молекул $\lg A$ и их внутриклеточном транспорте, но и в защите молекулы IgA от переваривания протеолитическими ферментами секретов.
(4) IgE специфически взаимодействует с тучными клетками и базофильными лейкоцитами (рис. 11-4). Эти клетки содержат сосредоточенные в гранулах биологически активные амины. Выделение этих веществ из клетки (дегрануляция) вызывает резкое расширение просвета венул и увеличение проницаемости их стенок. Подобную картину можно наблюдать при аллергических реакциях (например, бронхиальной астме,

Рис. 11-4. Дегрануляция тучных клеток. На поверхности тучных клеток молекулы $\operatorname{Ig} E$ связаны Fc -рецепторами. Аг взаимодействует с Fab-фрагментами IgE. Активированная этим сигналом тучная клетка подвергается дегрануляции [из Alberts B et al, 1983]

аллергическом рините, крапивнице). Аг-связывающие Fab-фрагменты молекулы Ig специфически взаимодействуют с Аг, попавшим в организм. Сформированный комплекс Ar - AT взаимодействует с рецепторами Fc -фрагментов IgE , встроенных в клеточную мембрану базофила или тучной клетки. Это взаимодействие и является сигналом для экзоцитоза гистамина. IgE защищает организм от паразитов. Синтез IgE увеличивается при паразитарных инвазиях, IgE-моноклональной миеломе.
(5) IgD. Его биологическая роль не установлена, присутствует в сыворотке в крайне низких концентрациях, появляется на поверхности развивающихся B -лимфоцитов.
Б. Главный комплекс гистосовместимости. Синтез главных Аг гистосовместимости (молекул MHC) контролирует комплекс генов MHC. Гены MHC расположены в коротком плече хромосомы 6 , характеризуются выраженным полиморфизмом и имеют большое количество аллелей. Спектр молекул MHC уникален для каждого организма и определяет его биологическую индивидуальность.

1. Классификация. HLA-молекулы, кодируемые генами MHC, подразделяют на два класса: молекулы MHC I класса (HLA-A, HLA-B и HLA-C) и молекулы MHC II класса (HLA-D, HLA-DP, HLA-DQ и HLA-DR).
2. Экспрессия. Молекулы MHC I и II классов - гликопротеины плазматической мембраны - экспрессированы на всех Аг-представляющих клетках и являются мишенями иммунного ответа при отторжении трансплантата.
a. Ar I класса представлены на поверхности практически всех клеток.
3. Aг II класса экспрессированы преимущественно на мембране иммунокомпетентных клеток, включая макрофаги, моноциты, Т- и В-лимфоциты.
Аномальная экспрессия MHC II. Неиммунокомпетентные эпителиальные клетки могут аномально экспрессировать белки MHC II. Белок MHC II, экспрессируемый на поверхности эпителиальных клеток, запускает каскад патологических реакций. Примеры:
(a) фолликулярные клетки щитовидной железы - раннее проявление аутоиммунного заболевания щитовидной железы,
(б) эпителий жёлчных протоков при первичном жёлчном циррозе,
(в) β-клетки островков Ла́нгерханса при сахарном диабете,
(г) эпителий слизистой оболочки кишечника при аутоиммунной затяжной диарее у детей.
4. Строение (рис. 11-5). Каждый Ar I и II классов содержит нековалентно связанные полипептидные цепи α и β. Цепи на 90% состоят из белка и на 10% из углеводов.

Рис. 11-5. Структура белков семейства иммуноглобулинов. Молекула МНС I класса состоит из α-цепи, внемембранная её часть связана с короткой цепью β_{2}-микроглобулина. Молекула МНС II класса состоит из двух CE: более длинной α-цепи и β-цепи. Часть каждой цепи выступает на поверхности клеточной мембраны, цепь содержит трансмембранный участок и небольшой фрагмент в цитоплазме. Молекула рецептора Т-клеток состоит из двух цепей: α и β. Каждая цепь представлена двумя внеклеточными Ig-подобными доменами, стабилизированными при помощи S-S связей, - вариабельным внеклеточным NH -концом и цитоілазматическим стабильным COOH -концом. SH-группа, присутствующая в цитоплазматическом фрагменте α-цепи, может взаимодействовать с мембранными или цитоплазматическими белками. Мономер молекулы IgM встраивается в плазматическую мембрану В-лимфоцитов, это рецептор Аг. Молекулярная структура рецепторов Т-клеток весьма сходна со структурой молекул МНС и Ig. Разнообразие структуры рецепторов T-лимфоцитов и Ig обеспечивается возможностью сайт-специфической рекомбинации множества различных генных сегментов, кодирующих отдельные фрагменты молекулы [из Маррак Ф, Капплер Д, 1986]

a. Ar I класса

(1) α-Цепь (44 кД) состоит из трёх доменов, формирующих спектр антигенных специфичностей молекул MHC I класса; закреплена в клеточной мембране.
(2) β-Цепь (12 кД) $-\beta_{2}$-микроглобулин (низкомолекулярный белок, мигрирующий при электрофорезе с фракцией β-глобулинов), не кодируется MHC , не обладает полиморфизмом и не имеет трансмембранного участка.

6. Аг II класса

(1) α-Цепь (34 кД) и β-цепь (29 кД) состоят из двух внешних доменов (α_{1}, α_{2} и β_{1}, β_{2} соответственно), трансмембранного участка и небольшого фрагмента цепи, лежащего в цитоплазме клетки.
(2) Обе цепи кодируются близкорасположенными кластерами генов HLA-D региона.
(3) Большинство эпитопов (антигенных детерминант) HLA расположено на β-цепи.
4. Функция. Молекулы МНС I и II класса контролируют иммунный ответ.
a. Представление Аг. Молекулы MHC II класса участвуют в представлении Аг макрофагами Т-клеткам и во взаимодействии Т-и В-лимфоцитов.
6. Клеточно-опосредованный цитолиз. Молекулы MHC I и II классов распознаются поверхностноклеточными дифференцировочными Ar CD и участвуют в реакциях клеточной цитотоксичности, осуществляемой цитотоксическими Т-лимфоцитами (T_{c}).
(1) CD8. Молекулы MHC I класса взаимодействуют с молекулой CD8, экспрессируемой на мембране предшественника T_{C}.
(2) CD4. Молекулы MHC II класса взаимодействуют с молекулой CD4, экспрессируемой на мембране T -хелпера (T_{H}), что вызывает выделение лимфокинов, стимулирующих пролиферацию и созревание предшественников T_{c}.
B. Иммунокомпетентные клетки. K ним относят T- и B-лимфоциты, NK-клетки, Аг-представляющие клетки.

1. Т-лимфоциты [глава 6.1 II Б 6 е]. Только Т-клетки узнают Аг, предварительно процессированный и представленный на поверхности Аг-представляющих клеток. Т-лимфоциты (тимус-зависимые) ответственны за клеточный иммунный ответ, а также помогают реагировать на Аг В-лимфоцитам при гуморальном иммунном ответе. Т-клетки состоят из функциональных подтипов CD4 ${ }^{+}$и CD8 $^{+}$.
а. T-хелперы $\left(\mathrm{T}_{\mathrm{H}}\right)-\mathrm{CD} 4^{+}$T-клетки. При активации синтезируют и секретируют цитокины (ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, γ-ИФН). В ходе иммунного ответа узнают молекулы MHC II класса.
(1) Вирус иммунодефицита человека избирательно инфицирует T-хелперы, приводя к прогрессирующему разрушению иммунной системы и, в конечном итоге, к СПИД. С молекулой CD4 в плазматической мембране Т-хелпера связывается один из белков вирусной оболочки gp 120 (рис. 11-6). Далее мембрана Т-лимфоцита и оболочка вирусной частицы сливаются,

Рис. 11-6. Взанмодействие вируса иммунодефицита человека с клеткои. Белок вирусной оболочки gp 120 связывается с молекулой CD4 мембраны лимфоцита [из Маттьюз ТД, Болоньези ДП, 1988]

и генетический материал вируса оказывается внутри клетки. Если репликация вируса интенсивна, то клетка лизируется. Вирусные частицы, их фрагменты и вирусная РНК оказываются во внеклеточном пространстве.
(2) Образование синцития. Один из механизмов гибели клеток при ВИЧ-инфекции образование синцитиев. Они появляются после того, как одна клетка поражается вирусом и начинает производить вирусные белки, в т.ч. белок $g p 120$, молекулы которого располагаются на поверхности клетки. Поскольку gp 120 обладает высоким сродством к CD4, нормальные T-хелперы связываются и сливаются с поражённым лимфоцитом. Синцитий не функционирует и погибает. При этом уничтожается заражённая клетка и вместе с ней множество нормальных Т-хелперов.
6. Цитотоксические Т-лимфоциты $\left(\mathrm{T}_{\mathrm{C}}\right)-\mathrm{CD} 8^{+}$Т-клетки, уничтожают инфицированные вирусом и чужеродные клетки при помощи перфорина [глава 6.1 II Б 6 е (5) (ii), глава 11 I [2]. Взаимодействуют с молекулой MHC I класса в плазматической мембране клетки-мишени.
в. Т-супрессоры (T_{s}) - представители CD^{+}Т-клеток, регулируют интенсивность иммунного ответа, подавляя активность T_{H} клеток. Предотвращают развитие аутоиммунных реакций. Защищают организм от нежелательных последствий иммунной реакции, от чрезмерного воспаления и аутоагрессии. Т-супрессоры обеспечивают толерантность (невосприимчивость) матери к отцовским Ar, представленным на клетках плода, что даёт возможность выживать чужеродному в иммунологическом отношении плоду в организме матери.
2. В-лимфоциты [глава 6.1 II Б 6 д] ответственны за гуморальный иммунный ответ. В мембране В-лимфоцита присутствует мономер Ig. Из красного костного мозга В-лимфоциты мигрируют в тимус-независимые зоны лимфоидных органов. Продолжительность жизни большинства В-лимфоцитов не превышает десяти дней, если они не активируются Аг. Зрелые В-лимфоциты (плазматические клетки) вырабатывают AT - Ig всех известных классов.
3. NK-клетки [глава 6.1 II Б 6 ж] не имеют поверхностных детерминант, характерных для Т- и В-лимфоцитов (МНС-нерестригированные киллеры). NK-клетки убивают ауто-, аллои ксеногенные опухолевые клетки, некоторые инфицированные вирусом и бактериями (например, Salmonella typhi) клетки. В типичных NK-клетках экспрессируются дифференцировочные Аг CD2, CD56 и CD16 (рецептор Fc-фрагмента Ig).
a. Цитолиз. В отличие от цитотоксических Т-лимфоцитов, способность NK-клеток к цитолизу не связана с необходимостью распознавания молекул МНС на поверхности мишени. NK-клетки уничтожают клетку-мишень не путём фагоцитоза, а (после установления с ней прямого контакта) при помощи перфорина.
б. Гуморальная регуляция. Активность NK-клеток регулируется цитокинами. γ-ИФН и ИЛ-2 усиливают цитолитическую активность NK-клеток.
в. Участие в антитело-зависимом клеточно-опосредованном цитолизе. NK-клетки, наряду с макрофагами, нейтрофилами и эозинофилами, участвуют в АТ-зависимом клеточно-опосредованном цитолизе. Для этого NK-клетки экспрессируют на своей поверхности рецептор Fc-фрагмента IgG (CD16). Реакция зависит от присутствия AT (Ig), узнающих клетку-мишень и связывающихся с ней. Fс-фрагмент связанных с клеткой-мишенью AT взаимодействует с рецептором Fc -фрагмента, встроенным в плазматическую мембрану NK-клетки. Природа агента, убивающего клетку-мишень в этом случае, неизвестна.
4. Аг-представляющие клетки: макрофаги, В-лимфоциты, фолликулярные отростчатые клетки лимфоузлов и селезёнки, клетки Ла́нгерханса, М-клетки в лимфатических фолликулах пищеварительного тракта, дендритные эпителиальные клетки вилочковой железы.

Эти клетки захватывают, процессируют и представляют Ar (эпитоп) на своей поверхности другим иммунокомпетентным клеткам, вырабатывают ИЛ-1 и другие цитокины, секретируют простагландин $\mathrm{E}_{2}\left(\mathrm{PGE}_{2}\right)$, угнетающий иммунный ответ. γ-ИФН усиливает фагоцитарную и цитолитическую активность макрофагов.

Г. Взаимодействие клеток при иммунном ответе

1. Гуморальный иммунный ответ. В гуморальном иммунном ответе участвуют макрофаги (Аг-представляющие клетки), Т-хелперы и В-лимфоциты.
a. Макрофаг поглощает вторгшийся в организм Аг и подвергает его процессингу расщеплению на фрагменты. Фрагменты Аг выставляются на поверхности клетки вместе с молекулой МНС. Комплекс *Aг-молекула MHC II класса» предъявляется Т-хелперу (рис. 11-7).
2. T-хелпер. Узнавание Т-хелпером комплекса *Аг-молекула МНС II класса» на поверхности макрофага стимулирует секрецию ИЛ-1 (рис. 11-8). Активированный ИЛІ-1 Т-хелпер синтезирует ИЛ-2 и рецепторы ИЛ-2, через которые агонист стимулирует пролиферацию Т-хелперов и цитотоксических Т-лимфоцитов. В случае Т-хелпера речь идет об аутокринной стимуляции, когда клетка реагирует на тот агент, который сама же синтезирует и секретирует. Таким образом, после взаимодействия с Аг-представляющей клеткой Т-хелпер приобретает способность отвечать на действие ИЛ-2 всплеском пролиферации. Биологический смысл этого процесса состоит в накоплении такого количества Т-хелперов, которое обеспечит образование в лимфоидных органах необходимое количество плазматических клеток, способных вырабатывать АТ против данного Аг.
в. В-лнмфоцит (рис. 11-8). Активация Bлимфоцита предполагает прямое взаимодействие А́г с Ig на поверхности Вклетки. В этом случае сам В-лимфоцит процессирует Аг и представляет его фрагмент в связи с молекулой MHC II на своей поверхности. Этот комплекс распознаёт Т-хелпер, отобранный при помощи того же Аг, который участвовал в отборе данного В-лимфоцита. Узнавание рецептором Т-хелпера комплекса *Аг-молекула MHC II класса*

Рис. 11-7. Распознавание антигена рецептором Т-лимфоцита. Аг представлен на поверхности макрофага в связи с молекулой МНС II класса. Рецептор Т-лимфоцита распознаёт Аг только в комплексе с молекулой МНС [из Аткинсон MA, Макларен HK, 1990]

Плазматическая клетка

памяти

AT

Комплекс Аг и молекулы MHC II класса

Комплекс Ar и молекулы
MHC I класса

Рецептор T-хелпера

Эпитоп

Рецептор ил

Молекула CD4

Молекула CD8

Рис. 11-8. Взаимодействие клеток при иммунном ответе. Рецептор T-хелпера распознаёт антигенную детерминанту (эпитоп) вместе с молекулой МНС II класса, выставленные на поверхности Аг-представляющей клетки. В молекулярном взаимодействии участвует дифференцировочный Ar T -хелпера CD4. В результате подобного взаимодействия Аг-представляющая клетка секретирует ИЛ-1, стимулирующий в Т-хелпере синтез и секрецию ИЛ-2, а также синтез и встраивание в плазматическую мембрану того же Т-хелпера рецепторов ИЛ-2. ИЛ-2 стимулирует пролиферацию Т-хелперов и активирует цитотоксические T-лимфоциты. Отбор B-лимфоцитов производится при взаимодействии Аг с Fab-фрагментами IgM на поверхности этих клеток. Эпитоп этого Аг в комплексе с молекулой MHC II класса узнаёт рецептор T -хелпера, после чего из T -лимфоцита секретируются цитокины, стимулирующие пролиферацию B-лимфоцитов и их дифференцировку в плазматические клетки, синтезирующие АТ против данного Аг. Рецептор цитотоксических Т-лимфоцитов связываетея с антигенной детерминантой в комплексе с молекулой МНС I класса на поверхности вирус-инфицированной или опухолевой клетки. В молекулярном взаимодействии участвует дифференцировочный Аг цитотоксического Т-лимфоцита CD8. После связывания молекул взаимодействующих клеток цитотоксический Т-лимфоцит убивает клетку-мишень [из Gartner LP et al, 1993]

на поверхности В-лимфоцита приводит к секреции из $Т$-хелпера ИЛ-2, ИЛ-4, ИЛ-5 и γ-ИФН, под действием которых В-клетка размножается, образуя клон плазматических клеток. В активированном В-лимфоците увеличивается количество рибосом, гранулярная эндоплазматическая сеть и комплекс Гольджи становятся более выраженными. Плазматическая клетка (рис. 11-9) синтезирует Ig. ИЛ-6, выделяемый активированными T -хелперами, стимулирует секрецию Ig. Часть зрелых В-лимфоцитов после Ar -зависимой дифференцировки циркулирует в организме как клетки памяти.
2. Клеточный иммунный ответ характеризуется пролиферацией коммитированных иммунокомпетентных клеток, реагирующих с Аг в комплексе с молекулой MHC I класса на поверхности чужеродных клеток или эндогенными иммуногенами в комплексе с молекулой MHC I класса на поверхности собственных вирус-инфицированных и опухолевых клеток. В клеточном иммунном ответе участвует цитотоксический T -лимфоцит.
Цитотоксический Т-лимфоцит (T_{c}). Предьявленный на поверхности клетки-мишени $\mathrm{Ar}^{\text {в }}$ комплексе с молекулой МНС I класса связывается с рецептором цитотоксического Т-лимфоцита (рис. 11-8). В этом процессе участвует молекула CD8 клеточной мембраны T_{C}. Секретируемый Т-хелперами ИЛ-2 стимулирует пролиферацию цитотоксических Т-лимфоцитов.
Уничтожение клетки-мишени. Цитотоксический Т-лимфоцит распознаёт клеткумишень и прикрепляется к ней (рис. 11-10 и 11-11). В цитоплазме ахтивированного

Рис. 11-9. Плазматическап клетка. Хорошо развитые гранулярная эндоплазматическая сеть и комплекс Гольджи свидетельствуют об активном синтезе и секреции белка [из Jипqueira LC, Cameiro J, 1991]

Рис. 11-10. Уничтожение клетки-мишени цитотоксическим Т-лимфоцитом. Пंри сближении Т-лимфоцита с клеткой-мишенью после специфического взаимодействия мембранных молекул кле-ток-партнёров Т-лимфоцит убивает клетку-мишень [из Юн ДД, Кон ЖА, 1988]

Рис. 11-11. Механизм воздействия Т-киллера на клетку-мишень. В киллере гранулы с перфорином в ответ на увеличение концентрации Ca^{2+} сливаются с клеточной мембраной. Освободившийся перфорин встраивается в мембрану клетки-мишени с последующим образованием пор, проницаемых для воды и ионов. В результате клетка-мишень лизируется [из Юн ДД, Кон ЖА, [988]

цитотоксического Т-лимфоцита присутствуют мелкие тёмные органеллы, напоминающие запасающие гранулы секреторных клеток, Гранулы концентрируются в той части Т-киллера, которая расположена ближе к месту контакта с клеткоймишенью. Параллельно происходят переориентация цитоскелета и смещение в эту область комплекса Го́льджи, в котором и формируются гранулы. В них содержится цитолитический белок перфорин. Выделяемые Т-киллером молекулы перфорина полимеризуются в мембране клетки-мишени в присутствии Ca^{2+}. Сформированные в плазматической мембране клетки-мишени перфориновые поры пропускают воду и соли, но не молекулы белка. Если полимеризация перфорина произойдет во внеклеточном пространстве или в крови, где в избытке имеется кальций, то полимер не сможет проникнуть в мембрану и убить клетку. Специфическое действие Т-киллера проявляется только как результат тесного контакта между ним и клеткой-мишенью, который достигается за счёт взаимодействия Аг на поверхности жертвы с рецепторами Т-киллера. Сам Т-киллер защищён от цитотоксического действия перфорина. Механизм самозащиты неизвестен.
Альтернативный механизм уничтожения клетки-мишени. Существует и нашло подтверждение другое представление о механизме цитотоксического действия, согласно которому цитотоксические Т-лимфоциты и NK-клетки являются источником сигнала, который запускает уже предсуществующую суицидальную программу в клеткемишени. Действие этого сигнала усиливают глюкокортикоиды.

Таблица 11-1. Некоторые гормоны иммунной системы, их источники и мишени

Гормон	Источник	Мишень
Интерлейкин-1 (ИЛ-1)	Макрофаг, В-лимфоцит, эндотелий, фнбробласт	Т-лимфоцит, В-лимфоцит, гранулоциты, базофил, фибробласт, эндотелий
Интерлейкин-2 (ИЛ-2)	T-лимфоцит (CD4>CD8)	Т-хелпер, цитотоксический Т-лимфоцит, В-лимфоцит
Интерлейкин-3 (ИЛ-3)	Т-лимфоцит	Кроветворные клетки
Интерлейкин-4 (ИЛ-4)	T-лимфоиит (CD4)	В-лимфоцит, Т-лимфоцит, макрофаг
Интерлейкин-5 (НЛ-5)	T-лимфоцит	В-лимфоцит, Т-лимфоцит, эозинофил
Интерлейкин-6 (ИЛ-6)	Т-лимфоцит, макрофаг, эндотелий, фнбробласт	T-хелпер, В-лимфоиит
Интерферон лейкоцитарный (α-ИфН)	Макрофаг, Т-лимфоцит, NK-клетка	T-лимфоцит, В-лимфоцит, NK-клетка
Интерферон фнбробластов (β-ИфН)	Фибробласт	Т-лимфоцит, кроветворные клетки
Иммунный интерферон (γ ИФН)	Т-лимфоцит	Макрофаг и другие Ar-представляюшие клетки. NK-клетка, Т-супрессор, В-лимфоцит
Кодовиестимулируюощй фактор гранулоцитов и макрофагов (GM-CSF)	Макрофаг, Т-лимфоцит, эндотелий, фибробласт	Кроветворные клетки, полиморфноядерный лейкоцит
Колониестимулирующий фактор гранулоцитов (G.CSF)	Макрофаг, фибробласт, эндотелий	Кроветворные клетки
Колониестимулирующий фактор махрофагов (M-CSF)	Макрофаг, фибробласт, эндотелий	Кроветворные клетки
Трансформирующий фактор роста β (TGF)	Тромбоцит, Т-лимфоцит, В-лимфоцит, макрофаг	Т-лимфоцит, В-лимфоцит, фибробласт, эндотелий
Фактор некроза опухоли (TNF)	Макрофаг, клетки карцином и сарком	Фибробласт, макрофаг, полиморфноядерный лейкоцит, эндотелий, В-лимфоцит, Т-лимфоцит, кроветворные клетки, кератиноцит

Д. Гормоны иммунной системы, их источники и мишени приведены в таблице 11-1.

Цитокины. Ранее продуцируемые лимфоцитами гормоны именовали лимфокинами, а моноцитами - монокины. В настоящее время для большой группы гуморальных факторов, секретируемых клетками системы тканей внутренней среды, принят термин «цитокины*.
Е. Реакции гиперчувствительности. Иммунные механизмы, обеспечивающие защиту организма, могут приводить к повреждению органов и тканей, реализуясь в виде реакций гиперчувствительности. Классификация Дже́лла и Ку́мбса подразделяет гиперчувствительность на четыре основных типа (в зависимости от механизмов, участвующих в их реализации). Многие иммунопатологические процессы опосредованы комбинацией нескольких реакций гиперчувствительности.

1. Реакции гиперчувствительности I типа (немедленного типа, атопические, реагиновые). При данном типе реакций происходит взаимодействие Аг с IgE, приводящее к высвобождению биологически активных медиаторов (главным образом, гистамина) из тучных клеток и базофилов. Примеры реакций I типа - поллиноз, бронхиальная астма, анафилактический шок.
2. Реакции гиперчувствительности II типа. АТ (обычно IgG или IgM) связываются с Аг на поверхности клеток, что активирует фагоцитоз и приводит к развитию АТ-зависимого клеточно-опосредованного цитолиза. Реакции сопровождаются активацией комплемента СЗ с последующим фагоцитозом клеток или активацией всей системы комплемента с последующим цитолизом и повреждением ткани. Пример реакции II типа аутоиммунная гемолитическая анемия.
3. Реакции гиперчувствительцости III типа (иммунных комплексов). Комплексы, образованные Аг и соответствуюцим АТ, активируют систему комплемента, приводя к развитию воспалительной реакции. Пример реакции III типа - острый гломерулонефрит.
4. Реакции типерчувствительности IV типа (клеточно-опосредованные или замедленного типа). В этих реакциях принимают участие не АТ, а Т-клетки, взаимодействующие с соответствующим Аг (сенсибилизированные Т-клетки). Сенсибилизированные Т-клетки после связывания соответствующего Аг оказывают либо непосредственное цитотоксическое действие на клетки-мишени, либо их цитотоксический эффект опосредуется с помощью лимфокинов. Примеры реакций IV типа - контактный дерматнт и реакция отторжения трансплантата.

II. ОРГАНЫ ИММУННОЙ ЗАЩИТЫ

А. Тимус (вилочковая, зобная железа). В тимусе происходит Аг-независимая дифференцировка Т-лимфоцитов. Лимфоциты тимуса называют тимоцитами.

1. Дифференцировка тимоцитов

a. Клетка-предшественница Т-лимфоцитов поступает в тимус из костного мозга в плодном периоде. Она может экспрессировать на своей поверхности дифференцировочный Аг CD7. Далее она синтезирует цитоплазматическую форму молекулы CD3, а позже выставляет на поверхности CDI и CD2.
б. Протимоциты имеют фенотип $\mathrm{CD} 7^{+} \mathrm{CD1} 1^{+} \mathrm{CD} 2^{+} \mathrm{CCD} 3^{+} \mathrm{CD} 4^{-} \mathrm{CD} 8^{-}$. Молекула $\mathrm{CD1}$ исчезает, когда клетка становится зрелой, а цитоплазматическая форма CD3 (сCD3) переходит в мембранную.
в. Тимоциты. По мере сборки α - и β-цепей рецептора Т-лимфоцита протимоциты начинают экспрессировать маркёры CD 4 и CD 8 , давая начало большинству тимоцитов с фенотипом $\mathrm{CDI}^{+} \mathrm{CD}^{+} \mathrm{CD} 4^{+} \mathrm{CD} 8^{+}$. Эти клетки способны дифференцироваться в двух направлениях: в клетки $\mathrm{CD1} 1^{-} \mathrm{CD} 2^{+} \mathrm{CD} 4^{+} \mathrm{CD} 8^{-}$и клетки $\mathrm{CD1} 1^{-} \mathrm{CD} 2^{+} \mathrm{CD} 4^{-} \mathrm{CD} 8^{+}$при наличии у обоих подтипов мембранного маркёра CD 3 и $\alpha \beta$-рецептора T-лимфоцита. Этим

клеткам разрешено покидать тимус, они появляются в периферической крови и лимфоидных органах. В нормальных условиях выселившиеся из тимуса Т-лимфоциты экспрессируют либо CD 4 , либо CD 8 , а клетки фенотипа $\mathrm{CD} 4^{+} \mathrm{CD} 8^{+}$отсутствуют.
2. Генез. Тимус относят к железам бранхиогенной группы. Парная закладка тимуса у человека происходит из 3 и 4 глоточных карманов. Закладка растёт в каудально-вентральном направлении, сохраняя контакт с глоткой. В дальнейшем происходит отделение закладки от стенки глотки и её смещение каудально и медиально с последующим слиянием по срединной линии. Большинство эпителиальных клеток тимуса происходит из эпителиальных (энтодермальных) стволовых клеток. Однако, многие данные свидетельствуют о двояком происхождении эпителиальных клеток тимуса (из энтодермы и эктодермы). Вскоре в зачатке тимуса появляются и начинают быстро размножаться лимфоидные клетки, мигрирующие из костного мозга.
3. Структура. Капсула и отходящие от неё септы построены из плотной волокнистой соединительной ткани. Объём органа заполнен эпителиальным каркасом, в котором располагаются тимоциты. В дольке зрелого тимуса различают корковый и мозговой слои (рис. 11-12).
a. Корковый слой. Субкапсулярный корковый слой содержит делящиеся клетки лимфобласты (клетки-предшественницы Т-лимфоцитов, ранние протимоциты). Они

Рис. 11-12. Локализация различных клеточных типов в тимусе. Пунктиром показана условная граница между корковым и мозговым слоями дольки. Корковый слой содержит лимфобласты и малые тимоциты, взаимодействующие с дендритными эпителиальными клетками и макрофагами. Те же клетки имеются в мозговом слое, но здесь присутствуют более дифференцированные тимоциты, готовые к выселению из тимуса [из Батиер ЭС, Вайссман ИЛ, 1987]

взаимодействуют с дендритными эпителиальными клетками. Большинство Т-лимфоцитов погибает в корковом слое. Функционально важна внутренняя часть коркового слоя. В корковом слое присутствует гематотимический барьер.
(1) Внутренняя часть содержит потомки лимфобластов, в большинстве своём неделящиеся малые тимоциты и дендритные эпителиальные клетки. Многие малые лимфоциты во внутреннем корковом слое взаимодействуют с дендритными эпителиальными клетками. По мере созревания протимоциты утрачивают дифференцировочный $\mathrm{Ar} \mathrm{CD1}$, но приобретают CD3, CD4 и CD8. Дальнейшая их дифференцировка протекает в мозговой части дольки тимуса.
Дендритные эпителиальные клетки имеют крупное округлое ядро. Характерная особенность - наличие длинных отростков, содержащих пучки тонофиламентов. Отростки соединяются между собой при помощи десмосом. В цитоплазме присутствуют гранулы, содержащие тимозины и тимопоэтин. Дендритные эпителнальные клетки экспрессируют чрезвычайно большое количество молекул МНС II класса.
(2) Гематотимический барьер делает корковую часть недоступной для Аг из внутренней среды организма и защищает от их действия созревающие здесь Т-лимфоциты. Барьер образуют эндотелиальные клетки и базальная мембрана капилляров коркового слоя, периваскулярная соединительная ткань и её клетки (перициты и макрофаги), а также дендритные эпителиальные клетки со своей базальной мембраной.
б. Мозговой слой. Тимоциты из коркового слоя поступают в мозговой слой и дифференцируются в CD^{+}и $\mathrm{CD8}^{+}$лимфоциты. Зрелые Т-клетки выходят из мозгового слоя по венулам и выносящим лимфатическим сосудам. Только $3-5 \%$ клеток, продуцируемых в тимусе, покидает этот орган. Остальные клетки погибают. В мозговом слое присутствуют макрофаги, уничтожающие погибшие или обречённые на гибель тимоциты. Дендритные эпителиальные клетки мозгового слоя образуют слоистые эпителиальные тельца Ха́ссела. Их функция неизвестна.
4. Функция. В вилочковой железе элиминируются лимфоциты, способные узнавать Ar собственного организма. В тимусе вырабатываются также гуморальные факторы иммунной системы.
a. Селекция лимфоцитов. Молекулы рецепторов в клеточной мембране тимоцита взаимодействуют с комплексом MHC-аутоантиген в мембране эпителиальной клетки. Клоны тех тимоцитов, рецепторы которых узнают комплекс МНС-аутоантиген, уничтожаются. Таким образом, нормально функционирующая иммунная система удаляет в вилочковой железе лимфоциты, запрограммированные активироваться Аг собственного организма.
6. Гуморальная функция. B тимусе синтезируются пептидные гормоны тимозины и тимопоэтин.

(1) Функции тимозинов

(a) Способствуют дифференцировке Т-лимфоцитов и появлению специфических рецепторов в их клеточной мембране.
(б) Стимулируют выработку многих лимфокинов, в т.ч. ИЛ-2.
(в) Стимулируют продукцию \lg.
(2) Тимопоэтин - стимулятор дифференцировки предшественников T -лимфоцитов, влияет на дифференцировку Т-лимфоцитов, но не на их иммунологический репертуар.
Б. Лимфатический узел (рис. 11-13) снаружи покрыт соединительнотканной капсулой, от которой отходят трабекулы. В лимфатическом узле различают корковую и мозговую части, а также синусы. На границе между корковой и мозговой частями расположена тимус-зависи-

Рис. 11-13. Лимфатический узел разделён на корковую и мозговую части. В корковой части расположены лимфатические фолликулы, от которых в мозговую часть отходят мозговые тяжи. Тимусзависимая паракортикальная зона заштрихована [из Bier OG et al, 1986]

мая паракортикальная зона. В лимфатическом узле Т-лимфоциты взаимодействуют с Bлимфоцитами и фолликулярными отростчатыми клетками. Из паренхимы лимфатического узла лимфоциты поступают в выносящие лимфатические сосуды.

1. Корковая часть. По периферии лимфатического узла, в корковой его части, расположены многочисленные лимфатические фолликулы и корковые синусоиды.
Лимфатические фолликулы. В их ретикулярной строме располагаются В-лимфоциты, фолликулярные отростчатые клетки и макрофаги. Центральная часть фолликула может содержать светлую зону - центр размножения (зародышевый центр).
2. Мозговая часть. Центральная часть узла содержит мозговые тяжи и синусоиды. Мозговые тяжи образованы скоплением лимфоцитов и плазматических клеток, большинство из них - мигранты из корковой части.
3. Зоны (рис. 11-14). Различают тимус-зависимую и тимус-независимую зоны. В последней большинство клеток уже прореагировало с Аг.
Тимус-зависимая зона - паракортикальная зона лимфатического узла. В тимусзависимой зоне большинство клеток готово к реакции с Аг. Т-лимфоциты располагаются преимущественно в этой зоне, откуда они поступают в мозговые синусы и выносящие лимфатические сосуды. В этой зоне присутствуют посткапиллярные венулы с кубическими эндотелиальными клетками, где происходит хоминг лимфоцитов.
4. Синусы. Под капсулой расположен краевой синус, куда поступает лимфа из приносящих лимфатических сосудов. Краевой синус через промежуточные синусы переходит в синусы мозгового вещества, а из них лимфа по выносящим лимфатическим сосудам в области ворот выходит из органа.
5. Вирус иммунодефицита человека (ВИЧ). Поражение лимфатических узлов характерно для ВИЧ-инфекции. В нормальном лимфатическом узле CD^{+}лимфоциты (цитотоксические и супрессорные клетки) в составе фолликулов корковой части отсутствуют. Лимфатический узел ВИЧинфицированного больного уже на ранней стадии заболевания содержит намного больше Т-лимфоцитов. Они проникают в фолликул и нарушают его структуру.

Рис. 11-14. Распределение Т- и В-лимфоцитов в лимфатическом узле. Тимус-зависимая зона светлая. Тимус-независимая зона заштрихована. Т-лимфоциты поступают в паренхиму узла из посткапиллярных венул и вступают в контакт с фолликулярными отростчатыми клетками и В-лимфоцитами [из Cradock CGet al, 1971]
В. Селезёнка (рис. 11-15) снаружи покрыта соединительнотканной капсулой, содержащей ГМК и большое количество эластина. От капсулы отходят трабекулы. В паренхиме органа различают белую и красную пульпу.

1. Красная пульпа. В ретикулярной строме красной пульпы преобладают эритроциты, и присутствуют многочисленные макрофаги, уничтожающие отжившие эритроциты.
2. Белая пульпа - совокупность лимфоидной ткани селезёнки, представленная скоплениями Т-лимфоцитов вокруг артерий, выходящих из трабекул (тимус-зависимая зона). Лимфатические фолликулы - тимус-независимая зона.

Лимфатический фолликул

(1) Центр размножения. В центральной части фолликулов (центр размножения, или реактивный центр) присутствуют макрофаги, фолликулярные отростчатые клетки и В-лимфоциты. Скопления В-лимфоцитов расположены и по периферии фолликула.
(2) Краевая зона - граница между фолликулом и красной пульпой. Здесь присутствуют многочисленные активно фагоцитирующие макрофаги. Во внутренней части краевой зоны расположены синусы, куда поступает кровь из артериальных сосудов фолликула. В краевой зоне кровь вступает в контакт с паренхимой органа. Здесь из кровеносного русла в ткань выходят Т- и В-лимфоциты, распределяющиеся по специфическим для каждого клеточного типа зонам селезёнки.

Рис. 11-15. Тимус-зависимая и тимус-независимая зовы селезёнки. Скопление Т-лимфоцитов (светлые клетки) вокруг артерий, вышедших из трабекул, образует тимус-зависимую зону. Лимфатический фолликул и окружающая его лимфоидная ткань белой пульпы - тимус-независимая зона. Здесь присутствуют В-лимфоциты (тёмные клетки), макрофаги и фолликулярные отростчатые клетки [из Cradock CG et al, 1971]
3. Кровообращение (рис. 11-15-11-17). Артерии, входящие в ворота органа, разветвляются на более мелкие трабекулярные артерии. Они покидают трабекулы и входят в пульпу (пульпарные артерии).
a. Центральнье артерии. От пульпарных артерий в фолликулы отходят артериолы (традиционно называемые центральными артериями), разветвляющиеся на капилляры в составе фолликулов белой пульпы. Тимус-зависимая зона - муфты из Т-лимфоцитов, окружающие эти ветви пульпарных артерий.
6. Кисточковые артериолы. Центральные артерии выходят из фолликула в красную пульпу и делятся на расходящиеся ветви - кисточковые артериолы, входящие в состав эллипсоидов. Эллипсоиды содержат скопления макрофагов, окружающих сосуды. В пределах эллипсоидов артериолы переходят в капилляры.
(1) По теории незамкнутой циркуляции, кровь из капилляров поступает в ретикулярную ткань красной пульпы, а затем - в синусоиды.
(2) По теории замкнутой циркуляции, капилляры открываются прямо в синусоиды.
в. Синусоиды. Ретикулярная строма красной пульпы пронизана синусоидами диаметром до 40 мкм. Эндотелиальные клетки синусоидов расположены продольно и выпячиваются в просвет сосудов. Между эндотелиальными клетками имеются продольные щели, через которые проходят форменные элементы крови.
г. Венозный отток. Кровь из синусоидов поступает в пульпарные вены, далее в трабекулярные вены к воротам органа.

4. Функции

a. Удаление бактерий из кровотока.
6. Продукция Ig, в том числе опсонизирующих АТ, необходимых для быстрого и эффективного удаления бактерий из кровотока. Печень участвует в удалении из кровотока хорошо опсонизированных бактерий, а селезёнка - плохо опсонизированных. После спленэктомии наблюдают снижение уровня сывороточных АТ.

Рис. 11-16. Синусонды в красной пульпе селезёнки. По теории незамкнутой циркуляции (слева), кровь из капилляров поступает в красную пульпу, а затем - в синусоиды. По теории замкнутой циркуляции (справа), капилляры открываются прямо в синусоиды (из Junqueira LC, Carneino J. 1991]

Незамкнутая система циркуляции

Замкнутая система циркуляции

Рис. 11-17. Кровоток в селезёвке. Трабекулярные артерии \rightarrow пульпарные артерии \rightarrow артериолы и капилляры фолликула \rightarrow синусы краевой зоны \rightarrow выход Т- и В-лимфоцитов из сосудистого русла. Артериолы фолликула \rightarrow кисточковые артериолы красной пульпы \rightarrow капилляры \rightarrow синусоиды [из Junqueira LC, Carneiro J, 1991]
в. Цитокины. Селезёнка - место образования гуморальных факторов, влияющих на систему мононуклеарных фагоцитов.
(1) Тафтсин - тетрапептид, стимулирующий активность фагоцитов. У лиц без селезёнки циркулирующего в крови тафтсина мало, отсюда и снижение резистентности к инфекциям.
(2) Спленин - функциональный аналог тимопоэтина.
г. Фагоцитоз повреждённых и старых эритроцитов.
Г. Скопления лимфоидной ткани расположены в ряде внутренних органов.

1. Лимфондный аппарат пищеварительного тракта рассмотрен в главе 12.
2. Слизистая оболочка кишечного типа (см. главу 12 II 1) ЖКТ, а также воздухопроводящих и мочевыделительных путей содержит значительное количество ретикулиновых волокон, одного из элементов поддерживающего каркаса органов кроветворения. Здесь, как правило, скапливаются лимфоциты, зачастую формирующие лимфондные фолликулы.

ПРЕПАРАТЫ

A. Tимус (рис. 11-18) состоит из различных по форме долек, разделённых отходящими от капсулы прослойками соединительной ткани - септами. В каждой дольке различают тёмноокрашенный корковый слой и более светлый мозговой. В петлях эпителиального каркаса коркового вещества значительно больше тимоцитов, чем и объясняется его более плотная окраска. В паренхиме железы, особенно в корковом слое, видны многочисленные венозные синусы. Под большим увеличением в мозговом слое хорошо видна структура телец Ха́cсела, образованных наслоёнными друг на друта эпителиальными клетками. Телыца Ха́cсела могут достигать значительной величнны (вплоть до того, что могут быть различимы невооружённым глазом).

Дольки тимуса. На самом деле вся паренхима вилочковой железы едина, в ней нет полностью отделённых друг от друга отдельных долек.

Рис. 11-18. Долька тимуса. Более тёмная периферическая часть дольки - корковый слой, а светлая центральная часть - мозговой с тельцами Ха́ссела. В междольковой соединительной ткани видны кровеносные сосуды [из Stöhr P et al, 1955]
Б. Лимфатический узел (рис. 11-19). На препарате хорошо видна капсула и отходящие от неё соединительнотканные перегородки - трабекулы. В корковом веществе ход трабекул радиальный, в мозговом веществе трабекулы анастомозируют: эдесь они видны как отдельные соединительнотканные тяжи. В корковом веществе присутствуют лимфатические фолликулы, от которых в мозговое вещество, повторяя ход трабекул, направляются мозговые шнуры (мякотные шнуры). Центральная часть лимфатических фолликулов (центры размножения, или реактивные центры) окрашена светлее их периферии. Ретикулярная ткань с узкими петлями, заполненными лимфоцитами разной степени зрелости и другими клеточными элементами, образует мякотные шнуры и лимфатические фолликулы. Между фолликулами и мякотными шнурами, с одной стороны, и капсулой и трабекулами, с другой, находятся синусы лимфатического узла.

Рис. 11-19. Лимфатический узел. По периферии расположен краевой синус, в который поступает лимфа из приносящих лимфатических сосудов. Из синусов мозговой части лимфа собирается в воротный синус и выходит из узла по выносящим лимфатическим сосудам. В секторе показано расположение ретикулиновых волокон [из $\operatorname{Ham} A W, 1974]$
В. Селезёнка (рис. 11-20). От капсулы внутрь органа отходят соединительнотканные перегородки - трабекулы, содержащие артерию и растянутые кровью трабекулярные вены. Между трабекулами расположена пульпа органа: красная пульпа (розово-красный или оранжевый цвет) и островки сине-фиолетового цвета (белая пульпа, лимфатические фолликулы, или мальпигиевы тельца селезёнки). В красной пульпе, окружающей фолликулы, преобладают эритроциты; эллипсоиды и венозные синусы, как правило, растянуты заполняющей их кровью. Ткань фолликулов располагается вокруг т.к. центральной артерии, лежащей несколько эксцентрично от геометрического центра фолликула, занятого центром размножения.

Рнс. 11-20. Селезёнка. От капсулы отходят трабекулы, содержащие трабекулярные артерии и вены. Совокупность лимфатических фолликулов - белая пульпа. Ткань красной пульпы содержит многочисленные эритроциты [из $\operatorname{Ham} A W$, 1974]

^ИTEPATYPA

Брондз БД Т-лимфоциты и их рецепторы в иммунологическом распознавании. М.: Наука, 1987
Вебер ДН, Вейсс РА Взаимодействие внруса СПИД с клеткой. В мире науки, 1988, №12, с.71-77
Голд ДУ, Гассон ДК Гормоны, стимулирующие кроветворение. В мире науки, 1988, №9, с.24-33
Гордон А, Носсал Г Клонально-селекционная теория. В мире науки, 1987, №10, с.3-38
Гре各 ГМ, Сетте А, Бюуос С Как Т-клетки узнают антигены. В мире науки, 1990, №1, с.28-37
Иммунология М.: Мир, 1987
Коэн А Своё, чужое и аутоиммунитет. В мире науки, 1988, №6, с.14-23
Маррак А, Капплер Д Т-клетка и ееं рецептор. В мире науки, 1986, №4, с.4-14
Олд Лд Фактор некроза опухолей. В мире науки, 1988, №7, с.22-31
Юн ДД, Кон А Как клетки-убийцы убивают. В мире науки, 1988, №3, с.14-21
Bier OG, Dias da Silva W, Gotze D, Mota I Fundamentals of immunology. Berlin: Springer, 1986
Bohnsack JF, Brown EJ The role of the spleen in resistance to infection. Ann. Rev. Medicine, 1986, 37: 49-59
Gaudecker B Functional histology of the human thymus. Anat. and Embryol., 1991, 183: 1-5
Goldstein P Cytolytic T-cell melodrama. Nature, 1987, 327: 12
Lampson A Molecular bases of the immune response to neural antigens. Trends Neurosci., 1987, No10, p.211-216

ВОПРОСЫ

Поясненке. За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений. Выберите один ответ или завершение утверждения, наиболее соответствующее каждому случаю.

1. В организм ввели АТ против тимозинов. Дифференцировка каких клеток нарушится в первую очередь?
(A) Моноцитов
(Б) В-лимфоцитов
(B) Т-лимфоцитов
(Г) Макрофагов
(Д) Всех названных
2. Какие клетки образуют бесконтрольно размножающийся миеломный клон, продуцирующий избыток иммуноглобулинов?
(A) T-киллеры
(Б) B-лимфоциты
(B) NK-клетки
(Г) Макрофаги
(Д) Т-хелперы
3. У мутантных мышей линии пиdе отсутствуют тимус и клеточный иммунный ответ. У этих мышей не происходит отторжения чужеродного трансплантата, что связано с отсутствием:
(A) В-лимфоцитов
(B) макрофагов
(B) T -киллеров
(Г) моноцитов
(Д) плазматических клеток
4. Толерантность (невосприимчивость) матери к отцовским Аг, представленным на клетках плода, контролируется определёнными клетками иммунной снстемы матери. Для коррекции нарушений толерантности в организм матери вводят такие же клетки от беременных или многорожавших. О каких клетках идёт речь?
(A) В-лимфоцит
(Б) T -хелпер
(B) Плазматическая клетка
(Г) Т-супрессор
(Д) T -киллер
5. Главный комплекс гистосовместимости. Верно всё, КРОМЕ:
(A) молекулы MHC I и II классов экспрессируются во всех клетках
(Б) участвует в активации T-клеток
(B) гены локализованы в хромосоме 6
(Г) определяет бнологическую индивидуальность организма
(Д) разные классы молекул участвуют в стимуляции разных субпопуляций иммунокомпетентных клеток
6. NK-клетки. Верно всё, КРОМЕ:
(A) распознают клетки-мишени по Аг MHC на их поверхности
(Б) составляют 10% популяции циркулирующих лимфоцитов
(В) ИЛ-2 усиливает цитотоксическую активность
(Г) уничтожают опухолевые клетки
(Д) содержат гранулы с перфорином
7. В селезёнке Т-лимфоциты зяселяют преимущественно:
(A) красную пульпу
(Б) периартериальную зону
(B) краевую, или маргинальную зону
(Г) центр размножения фолликула
(Д) пульпарные тяжи
8. В цеитре размножения фолликула лимфатического узла присутствуют все клетки, КРОМЕ:
(A) В-лимфоцитов
(Б) отростчатых фолликулярных клеток
(B) макрофагов
(Г) лимфобластов
(Д) Т-лимфоцитов
9. В поле зрения вндно множество лимфоцитов, сетевидный эпителиальный остов, фолликулы отсутствуют. Представлен препарат:
(A) тимуса
(Б) селезёнки
(B) лимфатического узла
(Г) красного костного мозга
(Д) ни один из названных
10. Укажите область лимфоузла, где большинство иммунокомпетентных клеток готово к взаимодействию с Ar:
(A) реактивный центр
(Б) кортикальная зона
(B) мякотные тяжи
(Г) паракортикальная зона
(Д) ворота узла

Пояснение. Каждый из нижеприведённых и пронумерованных вопросов 11-21 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:
А - если правильны ответы 1, 2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны ответы $1,2,3$ и 4
11. Молекула IgA:
(1) взаимодействует с Аг во внешней среде
(2) секретируется эпителиальными клетками
(3) входит в состав слёзной жидкости
(4) проникает через плацентарный барьер
12. Основные принципы клонально-селекционной теории иммунитета:
(1) клон лимфоцитов в ходе отбора узнаёт только свой Аг
(2) отбор клона при помощи Аг стимулирует размножение его клеток
(3) лимфоцит заранее запрограммирован на выработку АТ строго одной специфичности
(4) отбор клона производит ИЛ-2
13. Для В-лимфоцитов и плазматических клеток верно:
(1) плазматические клетки синтезируют и секретируют Ig
(2) долгоживущие В-лимфоциты лизируют инфицированные, чужеродные и опухолевые клетки
(3) В-лимфоциты - предшественники плазматических клеток
(4) γ-ИФН подавляет активность В-клеток
14. Рост клона В-лимфоцитов возможен в результате:
(1) синтеза и секреции T -хелпером специфического Ig, активирующего В-лимфоцит
(2) узнавания T -хелпером фрагмента Ar , представленного на поверхности B -лимфоцита
(3) активации B -лимфоцита B-клеткой памяти
(4) узнавания Т-хелпером главного комплекса гистосовместимости (MHC II) в плазмолемме В-клетки
15. Роль МНС в ходе иммунного ответа.
(1) Молекулы MHC I и II классов экспрессируют все Аг-представляющие клетки
(2) Аг-представляющая клетка отбирает клон T-хелперов при помощи MHC II
(3) T-киллеры распознают Аг в комплексе с MHC I на поверхности макрофага
(4) После узнавания MHC II на поверхности В-клеток T-хелпер стимулирует их размножение
16. Т-киллер убивает чужеродную клетку:
(1) если ее MHC отличается от MHC хозяина
(2) после распознавания Ar MHC на её поверхности
(3) путём формирования перфориновых пор в мембране клетки-мишени
(4) после опсонизации
17. Гормоны, вырабатываемые в тимусе:
(1) тимопоэтин
(2) тафтсин
(3) тимозины
(4) спленин

18. Какова функция тимозинов?

(1) Стимуляция дифференцировки Т-лимфоцитов
(2) Активация синтеза ИЛ-2
(3) Стимуляция синтеза Ig
(4) Поддержание реакции отторжения трансплантата

19. Кровоток в селезёнке:

(1) артериола, выходящая из фолликула, распадается на кисточковые артериолы
(2) кровь из синусоидов поступает в пульпарные вены
(3) между эндотелиальными клетками синусоидов имеются продольные щели
(4) эллипсоиды образованы скоплениями ГМК
20. Фуикции селезёнки:
(1) удаление бактерий из кровотока
(2) синтез Ig
(3) синтез стимулирующих фагоцитоз гуморальных факторов
(4) фагоцитоз
21. Мигрирующие из тимуса Т-лимфоциты заселяют:
(1) центр размножения лимфатических фолликулов
(2) область вокруг артерий в пульпе селезёнки
(3) периферию лимфатических фолликулов
(4) паракортикальную зону лимфатического узла

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - B

Тимозины синтезируют дендритные эпителиальные клетки вилочковой железы. Тимозины способствуют дифференцировке Т-лимфоцитов и появлению специфических рецепторов в их клеточной мембране. Инактивация тимозинов не отражается на дифференцировке моноцитов и В-лимфоцитов; моноциты и В-лимфоциты дифференцируются в костном мозге под влиянием других факторов; макрофаги дифференцируются из моноцитов.

2. Правильный ответ - Б

Миелома - злокачественная пролиферация клона плазматических клеток в костном мозге, сопровождающаяся секрецией моноклонального Ig. Макрофаги - Аг-представляющие клетки; T-хелпер стимулирует пролиферацию T-киллеров и B-лимфоцитов; NK-клетки и цитотоксические клетки (T-киллеры) уничтожают клетки-мишени путем цитолиза (повреждение клеточной мембраны, приводящее к гибели клетки).

3. Правильный ответ - B

В отторжении трансплантата участвуют Т-лимфоциты. При этом антигены MHC класса II клеток трансплантата активируют Т-хелперы к пролиферации. Эти Т-хелперы, в свою очередь, стимулируют генерацию цитотоксических Т-лимфоцитов, специфичных в отношении MHC I клеток-мишеней трансплантата и осуществляющих их цитолиз. При отсутствии тимуса нет Т-лимфоцитов, и клеточный иммунный ответ не развивается, отторжения трансплантата не происходит. Макрофаги дифференцируются из моноцитов костного мозга, это Аг-представляющие клетки. В-лимфоциты образуются в костном мозге. Активированные Аг В-лимфоциты пролиферируют и дифференцируются в плазматические клетки, продуцирующие Ig.

4. Правильный ответ - Г

T-хелперы стимулируют пролиферацию T-киллеров, участвующих в реакциях отторжения трансплантата. Т-супрессоры подавляют активность Т-хелперов, предотвращают развитие аутоиммунных реакций. Т-супрессоры обеспечивают толерантность матери к отцовским Аг, представленным на клетках плода, что дает возможность выживать чужеродному в иммунологическом отношении плоду в организме матери. Гормон-зависимые супрессорные клетки выделены из эндометрия во время секреторной фазы нормального менструального цикла. Показано, что эти клетки способны оказывать прямое супрессивное действие. Возможно, это антиген-специфические супрессоры. Такие супрессоры, распознающие Аг, влияют на связывание Т-хелперов с клетками аллотрансплантата. Трофобласт-зависимые супрессорные клетки, выделенные из децидуальной оболочки, в отличие от гормон-зависимых супрессоров, высвобождают фактор или факторы, оказывающие влияние на цитотоксические клетки, препятствуя тем самым связыванию ИЈ-2 со своим рецептором на Т-киллерах. Следовательно, активированные цитотоксические лимфоциты не получат сигнала к размножению, миграции и исполнению реакции отторжения.

5. Правильный ответ - А

Синтез главных Аг гистосовместимости (молекул MHC) контролирует комплекс генов MHC . Гены MHC расположены в коротком плече хромосомы 6 и характеризуются выраженным полиморфизмом. Молекулы MHC уникальны для каждого организма и определяют его биологическую индивидуальность. HLA-молекулы, кодируемые генами MHC, подразделяют на 2 класса: MHC I и MHC II. Ar MHC I представлены на поверхности практически всех клеток. Они участвуют в реакциях клеточной цитотоксичности, опосредованной Т-киллерами (цитотоксическими Т-лимфоцитами). Аг MHC II экспрессируются на мембране иммунокомпетентных клеток. Рецепторы T-хелперов узнают MHC II на поверхности Ar-представляющих клеток.

6. Правильный ответ - А

NK-клетки составляют до 10% популяции циркулирующих лимфоцитов. В отличие от цитотоксических T-клеток, способность NK-клеток к уничтожению опухолевых клеток не требует распознавания

молекул МНС на поверхности мишени. NK-клетки убивают клетку-мишень после установления с ней прямого контакта при помощи перфорина. Активность NK-клеток регулируется цитокинами; ИЛ-2 усиливает цитолитическую активность NK-клеток.

7. Правильный ответ - Б

В ретикулярной строме красной пульпы селезёнки преобладают эритроциты, присутствуют многочисленные макрофаги. Т-лимфоциты в белой пульпе селезёнки образуют скопления вокруг артерий, выходящих из трабекул (тимус-зависимая зона). Лимфатические фолликулы - тимус-независимая зона. В центральной части фолликулов (центры размножения) присутствуют макрофаги, фолликулярные отростчатые клетки и В-лимфоциты; в краевой зоне - многочисленные фагоцитирующие макрофаги. Пульпарные тяжи (часть красной пульпы, расположенная между синусами) содержат В-лимфоциты и дифференцирующиеся из них плазматические клетки.

8. Правильный ответ - Д

Фолликулы расположены в корковой части лимфатического узла и содержат макрофаги, отростчатые фолликулярные клетки, В-лимфоциты. При стимуляции Аг в лимфатических фолликулах появляются реактивные центры (место пролиферации лимфобластов). В нормальном лимфатическом узле Т-лимфоциты в фолликуле отсутствуют. Основная масса Т-лимфоцитов располагается в паракортикальной зоне. Т-лимфоциты появляются в фолликулах лимфатического узла больного, инфицированного ВИЧ.

9. Правильный ответ - А

Приведено описание тимуса. Тимус состоит из сети эпителиальных клеток, образующих каркас, заполненный тимоцитами. Лимфатические фолликулы в тимусе, а также в костном мозге отсутствуют; эти структуры характерны для селезёнки (белая пульпа) и лимфатического узла (корковое вещество).

10. Правильный ответ - Γ

В тимус-зависимой паракортикальной зоне лимфатического узла большинство клеток готово к взаимодействию с Ar. В тимус-независимой зоне (фолликулы коркового и мякотные тяжи мозгового вещества) большинство клеток уже прореагировало с Аг. Реактивные центры появляются в фолликулах кортикальной зоны после стимуляции Ar и содержат крупные пролиферирующие B -лимфобласты, дифференцирующиеся плазматические клетки (располагающиеся в дальнейшем и в мякотных тяжах). В области ворот имеются утолщённая часть капсулы узла, содержащая пучки ГМК, а также выносящий лимфатический сосуд, артерия и вена.

11. Правильный ответ - A

Секреторный Ig выделяется на поверхность слизистых оболочек пищеварительного тракта, воздухоносных путей, где взаимодействует с Аг. Молекула IgA входит в состав секрета молочных, слёзных, слюнных желёз. Из всех классов Ig только IgG проникают через плацентарный барьер.

12. Правильный ответ - А

Клон - совокупность клеток, происходящих от одной клетки-предшественницы. Клетки клона синтезируют Ig, специфически взаимодействующий только со своим Аг. Другие типы В-лимфоцитов при этом не размножаются. Таким образом, Ar - селективный агент, отбирающий нужный B-лимфоцит для его последующей пролиферации и образования клона. Это положение лежит в основе клональ-но-селекционной теории иммунитета. Основные постулаты теории: лимфоциты заранее запрограммированы для синтеза АТ строго одной специфичности; Аг производит отбор клеточного клона; отбор, осуществляемый Аг, стимулирует пролиферацию клеток клона; имеется столько различных клонов В-лимфоцитов, сколько разных АТ. ИЛ-2 - гормон иммунной системы, стимулирует пролиферацию отобранных Аг клонов.

13. Правильный ответ - Б

В-лимфоциты ответственны за гуморальный иммунный ответ. Из красного костного мозга В-лимфоциты мигрируют в тимус-независимые зоны лимфоидных органов. Продолжительность жизни большинства B-лимфоцитов не превышает 10 дней, если они не стимулированы Аг. При Аг-стимуляции

Т-хелперы секретируют ИЛ-2, ИЛ-4, ИЛ-5 и γ-ИФН, стимулирующие пролиферацию и дифференцировку В-лимфоцитов. В активированном В-лимфоцйте увеличивается количество рибосом, элементов гранулярной эндоплазматической сети и комплекса Го́льджи. Это плазматическая клетка, синтезирующая Ig. Секрецию Ig стимулирует ИЛ-6, выделяемый активированными Т-хелперами. Часть зрелых В-лимфоцитов после Ar -зависимой дифференцировки циркулирует в организме как клетки памяти в течение многих месяцев. В-клетки памяти (долгоживущие В-лимфоциты) при повторном попадании Аг пролиферируют и дифференцируются в синтезирующие Ig плазматические клетки. К лизису инфицированных, чужеродных и опухолевых клеток B-клетки памяти не способны.

14. Правильный ответ - B

Активация B -лимфоцита предполагает прямое взаимодействие Ar с Ig на поверхности B -клетки. B этом случае сам В-лимфоцит процессирует Аг и представляет его фрагмент в связи с молекулой MHC II на своей поверхности. Этот комплекс распознаёт T-хелпер, отобранный при помощи того же Аг, который участвовал в отборе данного В-лимфоцита. Узнавание рецептором Т-хелпера комплекса "Аг-молекула МНС II класса» на поверхности B-лимфоцита приводит к секреции из T-хелпера ИЛ-2, ИЛ-4, ИЛ-5 и γ-ИФН, под действием которых В-клетка размножается и дифференцируется. Часть зрелых В-лимфоцитов после Аг-зависимой дифференцировки циркулирует в организме как клетки памяти. Активирующая В-лимфоцит клетка - T-хелпер, но не В-клетка памяти. Последние дифференцируются в эффекторные (плазматические) клетки и новые клетки памяти при вторичном иммунном ответе.

15. Правильный ответ - Д

Молекулы MHC I и II классов экспрессируют все Аг-представляющие клетки. Макрофаг поглощает вторгшийся в организм Аг и подвергает его процессингу - расщеплению на фрагменты. Фрагменты Аг выставляются на поверхности клетки вместе с молекулой МНС. Комплекс «Аг-молекула MHC II класса» предъявляется T-хелперу. Узнавание T-хелпером комплекса "Аг-молекула МНС II класса" на поверхности макрофага, т.е. специфическое взаимодействие рецептора этого Т-лимфоцита со своим лигандом, стимулирует секрецию ИЛ-1 Аг-представляющей клеткой. Активированный ИЛ-1 Т-хелпер синтезирует ИЛ-2 и рецепторы ИЛ-2, через которые агонист стимулирует пролиферацию T-хелперов. T-хелпер распознаёт Аг в комплексе с МНС II В-лимфоцита, отобранного данным Аг. ИЛ-2, секретируемый Т-хелпером, стимулирует пролиферацию и дифференцировку B -лимфоцита. Т-киллер распознаёт предъявленный макрофагом Ar в комплексе с МНС I.

16. Правильный ответ - A

В клеточном иммунном ответе участвует T -киллер, реагирующий с A в в комплексе с гликопротеинами MHC I класса на поверхности чужеродных клеток или эндогенными иммуногенами в комплексе с молекулой MHC I класса на поверхности собственных инфицированных вирусом и опухолевых клеток. Предъявленный на поверхности клетки-мишени Аг в комплексе с молекулой МНС I класса связывается с рецептором цитотоксического Т-лимфоцита. Цитотоксический Т-лимфоцит распознаёт клетку-мишень и прикрепляется к ней. В цитоплазме активированного цитотоксического Т-лимфоцита присутствуют мелкие гранулы, содержащие цитолитический белок перфорин. Выделяемые Т-киллером молекулы перфорина полимеризуются в мембране клетки-мишени в присутствии Ca^{2+}. Сформированные в плазматической мембране клетки-мишени перфориновые поры пропускают воду и соли, но не молекулы белка. Специфическое действие Т-киллера проявляется только как результат тесного контакта между ним и клеткой-мишенью. Контакт возможен за счёт взаимодействия Аг на поверхности жертвы с рецепторами T-киллера. Опсонизация (связывание Ig с бактериями) стимулирует фагоцитарную активность нейтрофилов и макрофагов.

17. Правильный ответ - Б

Дендритные эпителиальные клетки тимуса синтезируют тимозины и тимопоэтин. Тимозины способствуют дифференцировке Т-лимфоцитов и появлению специфических рецепторов в их клеточной мембране, также стимулируют синтез многих лимфокинов (в т.ч. ИЛЛ-2) и синтез Ig. Тимолоэтин стимулятор дифференцировки предшественников Т-лимфоцитов, влияет на дифференцировку

Т-лимфоцитов, но не на нх иммунологический репертуар. Тафтсин и спленин синтезируются в селезёнке.

18. Правильный ответ - Д

Тимозины стимулируют дифференцировку Т-лимфоцитов и выработку многих лимфокинов, (в т.ч. ИЛ-2), стимулируют продукцию Ig. Тимозины способствуют реакции отторжения трансплантата, в которой участвуют Т-лимфоциты.

19. Правильный ответ - A

Так называемые центральные артерии выходят из фолликула в красную пульпу и делятся на расходящиеся ветви - кисточковые артериолы, входящие в состав эллипсоидов. Эллипсоиды содержат скопления макрофагов. В эллипсоидах артериолы переходят в капилляры. По теории незамкнутой циркуляции, кровь из капилляров поступает в ретикулярную ткань красной пульпы, а затем — в синусоиды. По теории замкнутой циркуляции, капилляры открываются прямо в синусоиды. Кровь из синусоидов поступает в пульпарные вены, далее - в трабекулярные вены к воротам органа. Между эндотелиальными клетками синусоидов имеются продольные щели, через которые свободно проходят клетки крови.

20. Правильны⿺辶 ответ - Д

Селезёнка выполняет следующие функции: фагоцитоз (например, старых и повреждённых эритроцитов), удаление бактерий из кровотока; продукция Ig, необходимых для быстрого и эффективного удаления бактерий из кровотока. Спленэктомия сопровождается снижением уровня сывороточных AT. В селезёнке образуются гуморальные факторы (спленин, тафтсин).

21. Правидьный ответ - В

В лимфатическом узле Т-лимфоциты заселяют паракортикальную зону. В селезёнке Т-лимфоциты образуют скопления вокруг артерий, вышедших из трабекул (периартериальная зона).

Пищеварительная система

Пищеварительный тракт - мышечная трубка, выстланная слизистой оболочкой; в стенке трубки и вне её присутствуют железы, выводные протоки которых открываются в просвет трубки; имеет собственный нервный аппарат (энтеральная нервная система) и собственную систему эндокринных клеток; просвет трубки - внешняя среда.

I. ИСТОЧНИКИ И РАЗВИТИЕ

А. Источники

1. Энтодерма На ранних стадиях (4-недельный эмбрион) зачаток пищеварительного тракта имеет вид энтодермальной трубки (первичная кишка), замкнутой на обоих концах. В средней части первичная кишка сообщается при помощи желточного стебелька с желточным мешком.
2. Эктодерма. Направленные к слепым концам первичной кишки впячивания эктодермы образуют ротовую и анальную бухты.
a. Ротовая бухта (стомодеум, рис. 12-1) отделена от переднего конца первичной кишки ротовой (стомодеальной) пластинкой.
б. Анальная бухта (проктодеум) отделена от задней кишки клоакальной мембраной.
3. Мезенхима. В состав стенки пищеварительной трубки входят производные мезенхимы прослойки соединительной ткани, ГМК, кровеносные сосуды.

A
5
Рис. 12-1. Стомодеум и ротовая пластинка: 24 -дневный зародыш - А. Стомодеум отделён от передней кишки ротовой пластинкой; Б - более поздний зародыш. Ротовая пластинка разрывается [из Sadler TW, 1990]
4. Мезодерма образует мезотелий серозных покровов, поперечнополосатые мышечные волокна.
5. Нейроэктодерма. Производные нейроэктодермы (в особенности нервного гребня) существенная часть ЖКТ (энтеральная нервная система, часть эндокринных клеток).
Б. Развитие

1. Лицо и ротовая полость
a. Источники. В развитии лица и ротовой полости участвуют эктодерма, мезенхима, нейроэктодерма (нервный гребень.и эктодермальные плакоды).
(1) Эктодерма даёт начало многослойному плоскому эпителию кожи, железам и покровному эпителию слизистой оболочки ротовой полости.
(2) Мезенхима. Производные мезенхимы головы развиваются из нескольких зачатков.
(a) Мезенхима сомитов и латеральной пластинки головного отдела зародыша формирует произвольные мышцы черепно-лицевой области, собственно кожу и соединительную ткань дорсальной области головы.

Рис. 12-2. Развитие лица: 5 -я неделя $-\mathbf{A} ; \mathbf{Б}-6$ яя неделя; $\mathbf{B}-7$-я неделя; $\boldsymbol{\Gamma}-10$-я неделя [из Sadler TW, 1990]
(б) Мезенхима нервного гребня образует структуры лица и глотки: хрящи, кости, сухожилия, собственно кожу, дентин, соединительнотканную строму желёз.
(3) Эктодермальные плакоды. Часть чувствительных нейронов ганглия тройничного нерва (ganglion trigeminale) и ганглия коленца (ganglion geniculi) промежуточного нерва происходит из эктодермальных плакод. Из этого же источника развиваются все нейроны VIII (спиральный ганглий, ganglion spirale cochleae), IX (каменистый ганглий, ganglion petrosum), X (узловатый ганглий, ganglion nodosum) ганглиев черепных нервов.
б. Лицо развивается из семи зачатков: два рано сливающихся нижнечелюстных отростка, два верхнечелюстных отростка, два латеральных носовых отростка и медиальный носовой отросток. Верхнечелюстные и нижнечелюстные отростки происходят из первой жаберной дуги (табл. 12-1).
(1) 4-я неделя. В лицевой области формируется лобный выступ, расположенный по срединной линии и покрывающий передний мозг (рис. 12-1). Лобный выступ даёт начало медиальному и латеральным носовым отросткам. Формирующиеся обонятельные ямки отделяют медиальный носовой отросток от латеральных (рис. 12-2). По направлению к срединной линии растут верхнечелюстные отростки, вместе с нижнечелюстным отростком образующие углы рта. Таким образом, вход в ротовую полость ограничен медиальным носовым отростком, парными верхнечелюстными отростками и нижнечелюстным отростком.
(2) 5-10-я неделя. К 5 -й неделе верхнечелюстные отростки отделены от латеральных носовых отростков носослёзной бороздой, из которой позже развивается носослёзный канал. На 6 -й неделе в ходе формирования верхней челюсти растущие к срединной линии верхнечелюстные отростки сближают носовые отростки, которые одновременно увеличиваются и постепенно закрывают нижнюю часть лобного выступа. На 7-й неделе верхнечелюстные и медиальные носовые отростки срастаются, образуя губной (подносовой) желобок (philtrum). Из материала срастающихся верхнечелюстных отростков формируется межмаксиллярный сегмент, из которого развиваются первичное нёбо и премаксиллярная часть зубной дуги (рис. 12-3). Костные структуры лица формируются в конце 2 -го - начале 3 -го месяца развития.

Рис. 12-3. Развитие верхней челюсти. Медиальные концы верхнечелюстных отростков сближаются и образуют межмаксиллярный сегмент, участвующий в образовании губного (подносового) желобка и дающий начало средней части верхнечелюстной кости с 4 резцами и первичному нёбу треугольной формы. На внутренней поверхности верхнечелюстных отростков формируются нёбные отростки. Они растут в медиальном направлении, сливаются по срединной линии и образуют вторичное нёбо [из Sadler TW, 1990]
в. Нёбо (рис. 12-4). Развивающееся вторичное нёбо разделяет первичную ротовую полость на носовую и вторичную (окончательную) ротовую полость. На внутренней поверхности верхнечелюстных отростков образуются нёбные отростки. На 6-7-й неделе их края направлены наклонно вниз и лежат вдоль дна ротовой полости по бокам от языка. По мере развития нижней челюсти и увеличения объёма ротовой полости язык опускается вниз, а края нёбных отростков поднимаются вверх до срединной линии. После срастания нёбных отросткіов и образования вторичного нёба носовые камеры сообщаются с носоглоткой посредством окончательных хоан.
r. Дефекты развития (рис. 12-5). При незаращении медиального и латерального носовых отростков наблюдается щель верхней губы. Косая лицевая щель проходит от верхней губы к глазу по линии соединения верхнечелюстного и латерального носового отростков. При неполном соединении верхнечелюстного и нижнечелюстного отростков развивается ненормально широкий рот - макростомия. Помимо косметических дефектов, эти пороки челюстно-лицевой области вызывают у ребёнка в первые дни жизни серьёзные нарушения дыхания и питания. При недоразвитии нёбных отростков наблюдается расщелина твёрдого и мягкого нёба. Иногда расщелина присутствует только в мягком нёбе.

Рис. 12-4. Развитие нёба и полости рта: зародыш 6,5 недель - A; нёбные отростки расположены по бокам от языка; Б - 7,5 недель; зачаток языка опускается, что позволяет нёбным отросткам сблизиться и в дальнейшем (10 недель) после сращения по срединной линии сформировать вторичное нёбо [из Sadler TW, 1990]

A

B

5

「

Рис. 12-5. Дефекты развития: \mathbf{A} - косая лицевая щель; Б - билатеральная щель губы; В - односторонняя макростомия; $\mathbf{\Gamma}$ - срединная щель губы [из Sadler TW, 1990]
2. Жаберный аппарат и его производные (рис. 12-6, табл. 12-1). В начальном отделе передней кишки образуется жаберный аппарат, участвующий в формировании лица, органов ротовой полости и шейной области. Жаберный аппарат состоит из пяти пар глоточных карманов и такого же количества жаберных дуг и щелей.
а. Глоточные карманы (рис. 12-7). Из структур жаберного аппарата первыми появляются глоточные карманы - выпячивания энтодермы в области боковых стенок глоточного отдела первичной кишки.
6. Жаберные щели. Навстречу глоточным карманам энтодермы растут впячивания эктодермы шейной области, получившие название жаберных щелей.
в. Жаберные дуги. Материал между соседними глоточными карманами и щелями называют жаберными дугами. Их четыре, пятая жаберная. дуга - рудиментарное образование. Жаберные дуги на передне-боковой поверхности шеи образуют валикообразные возвышіения. В мезенхимную основу каждой жаберной дуги проникают кровеносные сосуды (аортальные дуги) и нервы. Вскоре в каждой из них развиваются
ఉ мышцы и хрящевой скелет. Самая крупная - 1-я жаберная дуга (нижнечелюстная). Вторая жаберная дуга называется гиоидной. Ме́ньшие по размерам 3-я, 4-я и 5-я дуги не доходят до срединной линии и срастаются с расположенными выше. От нижнего края 2 -й жаберной дуги растёт жаберная складка (operculum), покрывающая снаружи нижние жаберные дуги. Эта складка срастается с кожным покровом шеи, образуя переднюю стенку глубокой ямки (sinus cervicalis), на дне которой располагаются нижние жаберные дуги. Этот синус сначала сообщается с внешней средой, а потом отверстие над ним зарастает. При незаращении шейного синуса на шее ребёнка остаётся фистулёзный ход, сообщающийся с глоткой, если происходит прорыв второй жаберной щели. Производные глоточных карманов, жаберных дуг и щелей представлены на рис. 12-7 и в табл. 12-1.

Рис. 12-6. Жаберный аппарат состоит из жаберных дуг, скаружи разделённых жаберными щелями, а изнутри - глоточными карманами [из Sadler TW, 1990]

Рис. 12-7. Производные гдоточных карманов. Материал первой пары глоточных карманов образует полость среднего уха и слуховую (евста́хиеву) трубу; второй глоточный карман формирует зачаток нёбной миндалины; из третьего глоточного кармана развиваются нижние паращитовидные железы и тимус; верхние паращитовидные железы и, возможно, небольшая часть тимуса происходят из четвёртого глоточного кармана [из Sadler TW, 1990]

Таблица 12-1. Производные глоточных карманов, жаберных дуг и щелей

Глоточные кармавы	Маберные дуги		Жаберные щели
	Дорсальная сторона	Вентральная сторона	
1 Полость среднего уха, евста́хиева труба	Нижнечелюстная дуга: нижнечелюстные и верхнечелюстные отростки, ме́ккелев хрящ, молоточек и наковальня	Зачатки языка и щитовидной железы	Наружный слуховой проход
2 Нёбные миндалины	Гиоидная дуга: подъязычная кость, стремя, шиловидный отросток		
3 Нижние паращитовидные железы, тимус	Подъязычная кость		
4 Верхние паращитовидные железы, тимус	Хрящи гортани		
5 Пара рудиментарная			

3. Развитие преддверия рта. На 7 -й неделе развития вблизи наружной части челюсти параллельно с образованием эпителиальной зубной пластинки возникает ещё одно разрастание эпителия, называемое лабио-гингивальной пластинкой (lamina labio-gingivalis). Она образует борозду, отделяющую зачатки верхней и нижней челюсти от губы.
4. Развитие языка (рис. 12-8). Язык развивается из нескольких зачатков, имеющих вид бугорков и расположенных на дне первичной ротовой полости в области вентральных отделов жаберных дуг. На 8-9 неделе начинается развитие сосочков на верхней поверхности передней части тела языка, тогда как лимфоидная ткань развивается в задней части слизистой оболочки языка. Мышцы языка происходят из миотомов верхних (передних) сомитов.
a. Тело языка. На 4 -й неделе появляется непарный язычный бугорок (tuberculum impar), расположенный по срединной линии между 1 -й и 2 -й жаберными дугами. Из этого бугорка развивается небольшая часть спинки языка, лежащая кпереди от слепого отверстия (foramen соесит). Кроме того, на внутренней стороне первой жаберной дуги образуется два парных утолщения, называемых боковыми язычными бугорками. Из этих трёх выступов формируются бо́льшая часть тела языка и его кончик.
б. Корень языка возникает из утолщения слизистой оболочки, лежащего позади слепого отверстия, на уровне 2 -й, 3-й и 4-й жаберных дуг. Это скоба (сориla). Непарный бугорок довольно быстро уплощается. Все зачатки языка срастаются, образуя единый орган.
в. Граница между телом и корнем языка. В дальнейшем границей между корнем и телом языка служит линия расположения желобоватых сосочков. На вершине этого угла располагается слепое отверстие, устье язычно-щитовидного протока. Из остатков этого протока в толще языка могут развиваться эпителиальные кисты.
5. Развитие молочных зубов (рис. 12-9) начинается в конце 2 -го месяца внутриутробного развития.
Зубной зачаток. В формировании зубов участвуют следующие структуры: зубная пластинка, эмалевый орган, зубной сосочек и зубной мешочек. Образование дентина и эмали распространяется от вершины коронки к корню, который полностью формируется после того, как прорежется коронка. Прорезывание молочных зубов у ребёнка начинается на $6-7-\mathrm{m}$ месяце жизни.
(1) Зубная пластинка появляется на 7 -й неделе развития как утолщение эпителия верхней и нижней челюстей. На 8-й неделе она врастает в подлежащую мезенхиму.

Рис. 12-8. Развитие языка: А - 6 -недельный и Б -12 -недельный зародыш человека. $1,2,3,4-$ жаберные дуги. В закладке языка участвует материал всех четырёх жаберных дуг. Два крупных боковых язычных бугорка и непарный язычный бугорок (tuberculum impar) происходят из первой жаберной дуги. Корень языыка развивается из скобы, которая происходит из 2 -й, 3 -й и 4 -й жаберных дуг. Из материала между непарным язычным бугорком и скобой закладывается щитовидная железа. Выводной проток (язычно-щитовидный проток) её зачатка открывается на поверхности зачатка языка слепым отверстием [из Sadler TW, 1990]

Рис. 12-9. Развитие зуба. На 8 -й неделе сформирована зубная пластинка. Она участвует в образовании зачатков молочного и постоянного зубов. На 10 -й неделе зачаток молочного зуба содержит эмалевый орган и зубной сосочек. К этому сроку сформировался вырост зубной пластинки в виде почки постоянного зуба. Развивающиеся амелобласты образуют эмаль, а одонтобласты из периферической мезенхимы зубного сосочка - дентин [из Sadler TW, 1990]
(2) Эмалевый орган - локальное скопление клеток зубной пластинки, соответствующее положению зуба; определяет форму коронки будущего зуба. Клетки органа образуют наружный и внутренний эмалевый эпителий. Между ними локализована рыхлая масса клеток - эмалевая пульпа. Клетки внутреннего эмалевого эпителия дифференцируются в цилиндрические клетки, образующие эмаль, - амелобласты. Эмалевый орган соединён с зубной пластинкой, а затем (3-5-й месяц) полностью отделяется от нее..
(3) Зубной сосочек - скопление мезенхимных клеток, происходящих из нервного гребня и расположенных внутри бокаловидного эмалевого органа. Клетки образуют плотную массу, которая принимает форму коронки зуба. Периферические клетки дифференцируются в одонтобласты.
(4) Зубной мешочек - мезенхима, окружающая зачаток зуба. Клетки, вступающие в контакт с дентином корня, дифференцируются в цементобласты и откладывают цемент. Наружные клетки зубного мешочка формируют соединительную ткань периодонта.
6. Закладка постоянных зубов. Постоянные зубы закладываются в конце 4 -го месяца внутриутробного развития. Из общей зубной пластинки позади каждого зачатка молочного зуба формируется зачаток постоянного зуба (рис. 12-10). Сначала молочный и постоянный зубы находятся в общей альвеоле. Позже их разделит костная перегородка. К 6-7 годам остеокласты разрушают эту перегородку и корень выпадающего молочного зуба.

Pac. 12-10. Развитие постозниого sy6a. Корень молочного зуба и зачаток постоянного зуба находятся в одной костной альвеоле. При смене зубов на месте молочного прорезывается постоянный зу6 [нз Voss $H, 1957$]

Смена зубов. Постоянные передние зубы (резцы, клыки, малые коренные) сменяют соответствующие молочные зубы и называются замещающими постоянными зубами. Премоляры (постоянные малые коренные зубы) приходят на смену молочным молярам (большим коренным зубам). Зачаток 2-го большого коренного зуба формируется на 1-м году жизни, а 3 -го моляра (зуб мудрости) - к 5-му году. Прорезывание постоянных зубов начинается в возрасте 6-7 лет. Первым прорезывается большой коренной зуб (первый моляр), затем центральные и боковые резцы. В 9-14 лет прорезываются премоляры, клыки и второй моляр. Зубы мудрости прорезываются позже всех - в 18-25 лет.

II. ПЛАН СТРОЕНИЯ ПИЩЕВАРИТЕЛЬНОГО ТРАКТА

Стенка пищеварительной трубки состоит из слизистой, подслизистой, мышечной и наружной (серозная или адвентициальная) оболочек (рис. 12-11).

1. Слизнстая оболочка. В пищеварительной трубке присутствуют слизистые оболочки двух типов: кожного и кишечного (табл. 12-2). Это подразделение основано на характере эпителия слизистой оболочки: слизистая кожного типа имеет многослойный плоский эпителий, слизистая кишечного типа - однослойный. Слизистая оболочка кишечного типа - часть системы иммунной защиты организма и может быть отнесена к органам лимфоидной системы.

Рис. 12-11. Строение стенки пищеварительного тракта. Стенка пищеварительной трубки состоит из 4-х оболочек: слизистая, подслизистая, мышечная и серозная (или адвентициальная). Слизистая оболочка содержит лимфатические фолликулы и может включать простые экзокринные железы (например, в желудке). Подслизистая оболочка некоторых отделов пищеварительного тракта (пищевод, двенадцатиперстная кишка) имеет сложные железы. Выводные протоки всех экзокринных желёз пищеварительного тракта открываются на поверхности слизистой оболочки. Через стенку пищеварительной трубки проходят и открываются на поверхности слизистой оболочки выводные протоки больших желёз пищеварительной системы - печени и поджелудочной железы [из Bloom W, FawcetI DW, 1968]

Таблица 12-2. Типы слизистых оболочек

	Комный	Кищечный
Эпителий	Многослойный плоский	Однослойный цилиндрический
Собственный слой	Коллагеновые и эластические волокна	Коллагеновые, эластические и много ретикулиновых волокон
Мышечный слой	Слабое развитие или полное отсутствие	Хорошо развит
Локализация	Органы ротовой полости, пнщевод, каудальная часть прямой кишки	Желудок, тонкий и толстый кишечник

a. Эпителий. Слизистая оболочка кожного типа содержит многослойный плоский эпителий, слизистая оболочка кишечного типа - однослойный цилиндрический.
6. Собственный слой состоит из рыхлой волокнистой соединительной ткани. Здесь встречаются ГМК, лимфоциты, плазматнческие клетки, фибробласты и тучные клетки.
в. Мышечный слой построен из ГМК. В слизистой оболочке кожного типа мышечный слой присутствует только в пищеводе. Мышечный слой обеспечивает изменения рельефа слизистой оболочки. В нём различают два подслоя. В одном из них все ГМК ориентированы циркулярно, а в другом подслое - продольно.
2. Подслизистая оболочка находится между слизистой и мышечной оболочками, представлена рыхлой волокнистой соединительной тканью и содержит сплетение кровеносных сосудов и подслизистое (ма́йсснеровское) нервное сплетение. Оба сплетения необходимы для обеспечения жизнеспособности и выполнения функций слизистой оболочки. Подслизистая оболочка реализует локальные смещения слизистой оболочки относительно мышечной, отсутствует в дёснах, твёрдом нёбе и на дорсальной (верхней) поверхности языка.
3. Мышечная оболочка. На всём протяжении пищеварительного тракта, начиная от границы между верхней и средней третью пищевода, мышечная оболочка построена из ГМК, которые образуют два слоя: циркулярный и продольный. Между этнми слоями расположено ауэрба́ховское нервное сплетение. ГМК участвуют как в физнологической, так и в репаративной регенерации, способны к синтезу коллагенов, эластина и других компонентов межклеточного вещества.
Иннервация. Иннервирующие ГМК двигательные нервные окончания образованы либо аксонами двигательных нейронов собственного нервного аппарата пищеварительного тракта (для железистых клеток и ГМК мышечного слоя слизистой оболочки нейроны в составе подслизистого нервного сплетения, для ГМК мышечной оболочки - нейроны межмышечного нервного сплетения), либо аксонами нервных клеток вегетативной нервной системы, расположенных за пределами стенки пищеварительного тракта. Аксоны двигательных нейронов вблизи ГМК формируют по своему протяжению множество чётковидных расширений (варикозов), содержащих синаптические пузырьки. Когда возбуждение в виде нервных импульсов достигает варикозов, то содержнмое части синаптических пузырьков освобождается в межклеточное пространство и взаимодействует с соответствующими рецепторами в плазмолемме ГМК. Однако, многне ГМК находятся достаточно далеко (до единиц миллиметров) от варикозов, такие расстояния для молекул диффундирующих нейромедиаторов чрезмерно велики. Другими словами, в мышечной оболочке имеется значительное количество ГМК, не иннервируемых двигательными нервнымн окончаниями. В таких клетках передача возбуждения осуществляется от иннервированных ГМК при помощи щелевых контактов.
4. Наружная оболочка. Если рассматриваемая часть пищеварительного тракта обращена в брюшную полость, то наружная оболочка - серозная. T. serosa везде устроена

однотипно: со стороны брюшной полости (плевральной полости, полости сердечной сумки) тонкий сплошной пласт однослойного плоского эпителия, часто называемого мезотелием. Этот пласт эпителия должен обладать хорошими транспортными свойствами (например, для всасывания из полости избытка жидкости). Серозная оболочка должна обеспечить беспрепятственное скольжение находящихся в полости органов относительно друг друга. Под базальной мембраной расположена пластинка волокнистой соединительной ткани.

III. НЕРВНЫЙ АППАРАТ

Энтеральная нервная система - совокупность собственных нервных клеток (интрамуральные нейроны) пищеварительного тракта, а также отростков вегетативных нейронов, расположенных за пределами пищеварительной трубки (экстрамуральные нейроны). Регуляция двигательной и секреторной активности желудочно-кишечного тракта - главная функции энтеральной нервной системь.
А. Сплетения. Собственный нервный аппарат пищеварительного тракта представлен подслизистым и межмышечным нервными сплетениями.

1. Межмышечное нервное сплетение расположено в мышечной оболочке пищеварительного тракта, состоит из содержащей ганглии сети нервных волокон. В ганглиях сосредоточены перикарионы нейронов. Количество нейронов в ганглии варьирует от единиц до сотен. Межмышечное нервное сплетение необходимо в первую очередь для управления моторикой пищеварительной трубки.
Плотность распределения нейронов различна в разных отделах пищеварительного канала. Она наиболее высока в области малой кривизны желудка. Толстый кишечник имеет более высокую плотность нейронов, чем тонкий.
2. Подслизистое нервное сплетение расположено в подслизистой оболочке пищеварительного тракта. Это сплетение управляет сокращениями ГМК мышечного слоя слизистой оболочки, а также секрецией желёз слизистой и подслизистой оболочек.

Б. Двнгательная вегетативная иннервация

1. Парасимпатическая иннервация. По Лэнгли, парасимпатический двигательньй путь состоит из двух нейронов. Рассмотрим путь для блуждающего нерва.
a. Тело первого нейрона расположено в двигательном ядре блуждающего нерва, аксоны этих нейронов в составе блуждающего нерва входят в пищевод, желудок, двенадцатиперстную кишку, поджелудочную железу, жёлчный пузырь и образуют синапсы со вторым нейроном двигательного пути.
б. Bторой нейрон - двигательная нервная клетка межмышечного и подслизистого нервных сплетений - клетка До́zеля 1-го типа [глава 8.2 IV B 1 а]. Аксоны клеток Догеля 1 -го типа образуют двигательные нервные окончания на ГМК и железистых клетках.
в. Нейромедиаторы. Оба нейрона двигательного пути холинергические, т.е. нейромедиатор, выделяющийся в синапсах на клетках Догеля 1 -го типа и из варикозностей терминального отдела аксона клеток Догеля 1-го типа, - ацетилхолин. Рецепторы ацетилхолина как на клетках Догеля 1-го типа, так и на ГМК и железистых клетках -м-холинорецепторы.
г. Каудальный отдел пищеварительного тракта. Двухнейронная парасимпатическая цепочка для органов пищеварительного тракта, находящихся в тазовой области, организована сходным образом. Тела первого нейрона цепочки находятся в парасимпатическом ядре крестцового отдела спинного мозга.
2. Симпатическая иннервация. Нейронная цепочка содержит два либо три нейрона.
a. Первый нейрон (холинергический) расположен в вегетативном ядре спинного мозга (боковые рога), аксон этого нейрона образует холинергические (нейромедиатор ацетилхолин, рецепторы мускаринового типа) синапсы со вторым нейроном цепочки.
б. Bторой нейрон расположен в ганглиях симпатического ствола и имеет адренергическую природу (нейромедиатор норадреналин).
в. Контакты второго нейрона. Аксоны второго нейрона входят в органы пищеварительного тракта и иннервируют железистые клетки и ГМК (двухнейронная цепочка) либо образуют синапсы с интрамуральными нейронами (трёхнейронная цепочка).
(1) Двухнейронная цепочка. Иннервированы ГМК сосудистой стенки, железистые клетки и ГМК мышечной оболочки и мышечного слоя слнзистой оболочки.
(2) Трёхнейронная цепочка. Формируются синапсы с двигательными нервными клетками в составе межмышечного и подслизистого нервных сплетений, т.е. с клетками Догеля 1-го типа; аксоны клеток Догеля 1-го типа образуют варикозные терминали, иннервирующие железистые клетки и ГМК.
3. Местные рефлекторные дуги. В стенке пищеварительной трубки присутствует простейшая рефлекторная дуга, состоящая из двух нейронов: чувствительного (клетки Догеля 2-го типа), терминальные разветвления отростков которого регистрируют ситуацию в разных оболочках пищеварительного тракта; и двигательного (клетки Догеля 1-го типа), концевые разветвления аксонов которых образуют синапсы с мышеч́ными и железистыми клетками и регулируют активность этих клеток.

IV. ЭНАОКРИННАЯ СИСТЕМА

Эндокринная система желудочно-кишечного тракта включает эндокринные (энтероэндокринные) клетки слизистой оболочки и желёз пищеварительной трубки. Сюда же относят некоторые нейроны энтеральной нервной системы, секретирующие гормоны (в ряде случаев те же, что и энтероэндокринные клетки). По этой причине эндокринную систему ЖКТ часто называют нейроэндокринной системой. Наконец, с функциональной точки зрения к этой же системе можно отнести гистамин, простагландины и другие биологически активные вещества, выделяющнеся из разных клеточных источников. Традиционно эндокринные клетки островков Ла́нгерханса поджелудочной железы рассматривают в разделе "Пищеварительная система".

1. Островки Ла́нгерханса. Эндокринная часть поджелудочной железы - совокупность островков Ла́нгерханса (около 1 млн). Каждый островок имеет диаметр до 0,2 мм и содержит несколько сотен и даже тысяч эндокринных клеток, окружённых тонкой сетью ретикулиновых волокон и многочисленными кровеносными капиллярами с фенестрированным эндотелием. Островковые клетки синтезируют и секретируют пептидные гормоны, отсюда - хорошее развитие гранулярной эндоплазматической сети, аппарата Го́льджи, наличие секреторных гранул. Различают несколько типов эндокринных клеток, синтезирующих и секретирующих в просвет капилляров следующие пептидные гормоны (рис. 12-12): инсулин (β-клетки), глюкагон (α-клетки), соматостатин (δ-клетки), панкреатический полипептид (PP-клетки) и у детей младшего возраста - гастрин (G-клетки). Идентификацию типов клеток осуществляют при помощи специальных методов окраски, точная идентификация - иммуноцитохимическая.
a. $\boldsymbol{\alpha}$-Клетки составляют около 15% островковых клеток, расположены преимущественно по периферии островка, имеют неправильной формы ядро, в цитоплазме содержат гранулы глюкагона.

(1) Глюкагон

(a) Ген $G C G(138030,2 q 36-q 37)$ содержит последовательности, кодирующие глюкагон, а также глюкагоноподобные пептиды 1 и 2.

Мутация гена $G C G$ приводит к выраженной гипогликемии.

Инсулин

Рис. 12-12. Структура некоторых гормонов ХККТ [по Merck Index, 12 нздание, 1996]
(б) Структура (рис. 12-12). Глюкагон - пептид, содержащий 29 аминокислотных остатков. Время полужизни глюкагона в крови - около 5 минут.
(в) Сехрецию глюкагона подавляет глюкоза.
(г) Мишени. Основные мишени глюкагона - гепатоциты и адипоциты.
(д) Рецептор глюкагона (ген GCGR, 138033, 17q25) расположен в плазмолемме клеток-мишеней, связывает только глюкагон и посредством G-белков активиpyem аденилатциклазу.

Мутация гена GCGR (GLY40 \rightarrow SER) приводит к развитию одной из форм инсулин-независимого сахарного диабета.
(e) Функции. Глюкагон расценивают как антагонист инсулина, этот гормон стимулирует гликогенолиз и липолиз, что ведёт к быстрой мобилизации источников энергии (глюкоза н жирные кислоты).
(2) Глюкагоноподобный пептид 1 (GLP-1)
(a) Ген глюкагона $G C G$ кодирует последовательность глюкагоноподобного пептида 1 (138032, GLP-1, пептид 7-37). Глюкагоноподобный пептид 1 секретируют L -клетки слизистой оболочки ЖКТ. Неизвестно, экспрессируют ли α-клетки островков Лїнерханса GLP-1.
(б) Секрецию GLP-1, как и глюкагона, подавляет глюкоза.
(г) Мишени. Главная мишень GLP-1 - секретирующие инсулин β-клетки островков Лангерханса.
(д) Рецептор GLP-1 (ген GLP1R, 6p21) специфически связывает GLP-1 (но не глюкагон) и активирует аденилатциклазу.
(e) Функции. Глюкагоноподобный пептид 1 - самый мощный стимулятор вызванной глюкозой секреции инсулина. GLP-I также подавляет желудочную секрецию.
б. β-Клетки составляют до 70% эндохринных клеток островка, расположены преимущественно в его центральных частях, содержат крупное округлое ядро и гранулы инсулина.
(1) Инсулин
(а) Ген $I N S(176730,11 p 15.5)$ кодирует транслируемый проинсулин, преобразуемый в инсулин и С-пептид.
Мутации. Известно до 10 мутаций гена $I N S$, приводящих к трансляции дефектных инсулинов (гиперпроинсулинемия и гиперинсулинемия).
(б) Структура (рис. 12-12). Инсулин - димер, состоящий из двух цепей, связанных дисульфидными группами. В крови практически полностью деградирует в течение 5 минут.
(в) Регуляция
(i) Стимуляция

Гиперкалиемия. Повышение содержания K^{+}во внутренней среде организма. Глюхоза. Повышение содержания глюкозы в крови.
Ацетилхолин из блуждающего нерва (здесь не всё ясно, т.к. классический антагонист атропин не влияет на стимулирующий эффект ацетилхолина).
Гастрин-рилизинг гормон, выделяющийся из блуждающего нерва. Глюкагоноподобный пептид 1 (GLP-1). Мощный стимулятор секреции инсулина. Производные сульфонилмочевины (капример, толбутамид)
(ii) Торможение Соматостатин
Адреналин и норадреналин (через α-ддренорецепторы) подавляют секрецию инсулина. Через β-адренорецепторы эти агонисты стимулируют секрецию инсулина, но в островках Лангерханса преобладают α-адренорецепторы; суммарный эффект - угнетение секрецин ннсулина.
(r) Мишени. Главные мишени - печень, скелетные мышцы, адипоциты.
(д) Рецептор инсулина [рецепторная тирозин киназа, см. главу 2 I B 2 а (2) (а) (i))] тетрамер (рис. 9-1), его субъединицы кодирует один ген (ген INSR, 147670, 19p13.2). Мутации. Известно не менее 30 мутаций гена $I N S R$, приводящих к развитию полной или частичной нечувствительности мишеней к эффектам ннсулина (сахарный диабет типа II).
（e）Функции инсулина разнообразны（регуляция обмена углеводов，липидов и белков）．Инсулин－главный регулятор гомеостаза глюкозы．
Мембранны⿺辶 транспорт глюкозы－стимуляция．
Гликолиз－стимуляция．
Липогенез－стимуляиия．
Синтез белка－стимуляция．
Пролиферация клеток－стимуляция．
（2）Сахарный диабет（diabetes mellitus）－гетерогенная группа состояний，синд－ ром，складывающийся из метаболических нарушений（гипергликемия，дислипи－ демия，расстройства энергетического обмена），поражения мелких сосудов（рети－ нопатии，нефропатии），поражения крупных сосудов（атеросклероз）и периферической невропатии．Гипергликемия и другие метаболические наруше－ ния при сахарном диабете имеют одну причину－неадекватное действие инсулина на мишени гормона вследствие уменьшения секреции инсулина или резистентности мишеней к его действию．
（а）Инсулин－зависимый сахарный диабет（тип I，юношеский диабет）．Тяжеллый сахар－ ный диабет，аутоиммунное заболевание，быстрое развитие в возрасте до 20 лет（этой формой диабета страдает 1 из 250）；происходит опосредованная Т－лимфоиитами ги－ бель β－клеток островков Лангерханса поджелудочной железы（наблюдается экспрес－ сия β－клетками т．н．суперантигена－ретровируса？）；клинически：жажда，полиурия， повышенный аппетит．потеря массы，низкое содержание инсулина в крови，инсулино－ терапия и диета обязательны．
（i）Этиология неясна．Патологический процесс，приводящий к гибели β－клеток островков Ла́неерханса，связывают с рядом генетических，аутоиммунных фак－ торов и факторов окружающей среды．

［I］Генетические факторы

Наблюдается повышенная частота экспрессин некоторых Ar MHC（HLA DR3 и DR4）．При одновременном наследовании DR3 и DR4 риск развития диа－ бета удваивается．
Среди ближайших родственников больного риск заболевания повышен；страда－ ет $2-5 \%$ сибсов и их потомков．
Конкордантность для однояйцовых близнецов－ 50% ．
［II］Аутоиммунные факторы．Аутоиммунную природу заболевания подтвержда－ ет наличие циркулирующих АТ к β－клеткам в сыворотке 85% пациентов со свежим диабетом типа I и повышенная частота ассоциированности с аутоим－ мунными заболеваниями．
［III］Факторы окружающей среды．Менее ясно значение факторов окружаю－ щей среды．Роль вирусов при развитии инсулин－зависимого сахарного диабета обсуждается давно．Маловероятно，что за возникновение всех вариантов бо－ лезни ответственен один и тот же вирус．
（ii）Патогенез
［I］При разрушении 90%－клеток снижение секреции инсулина становится кли－ нически значимым．Без инсулина обменные процессы смещаются в сторону катаболизма（снишенное потребление глюкозы и повышенное образо－ вание глюмозы путём глюконеогенеза и гликогенолиза），что приводит к ги－ пергликемии．
［II］Если содержание глюкозы в плазме крови превышает почечный порог реабсор－ биии（более 180 мг\％，или 10,2 ммоль／л），развивается глюкозурия，приводя－ щая к осмотнческому диурезу，повышающему выделение мочи и потребление жидкости．При резко выраженном дефиците инсулина в большом количестве образуются кетоны．Без инсулинотерапии развивается диабетический кето－ ацидоз（метаболический синдром，характеризующийся гиперглнкемией，мета－

болическим ацидозом, дегидратацней и сонливостью). Кетоацитоз может привести к развитию комы и смерти.
(б) Инсулин-независимый сахарный диабет (тип II, диабет взрослых). Умеренно выраженный сахарный диабет с постепенным началом, обычно в возрасте свыше 35 лет у лиц полного телосложения (этой формой диабета страдает каждый двадцатый); абсолютное содержание инсулина в крови - от нормы до высоких значений, в соотношении с сахаром крови повышение содержания инсулина незначительно; поддаётся терапии диетой и/или гипогликемическими препаратами per os; могут развиться дегенеративные поражения органов.

Этиология

[I] Генетические факторы ещё более значимы при диабете II типа. Уровень конкордантности среди идентичных близнецов достигает 100%.
[II] Охирение. У 80% больных диабетом II типа масса превышает идеальную на 15% и более. Ожирение сочетается с резистентностью к действию инсулина как у больных диабетом, так и у здоровых; эта резистентность может быть вызвана уменьшением числа рецепторов инсулина, их дефектами и событиями, происходящими после взаимодействия инсулина и его рецептора.
в. δ-Клетки секретируют соматостатин (см. главу 9 II Д 1 и рис. 9-10).
г. PP-клетки (F -клетки, согласно другой терминологии) секретируют панкреатический полипептид.
Панкреатический полипептид расценивают как один из регуляторов пищевого режима.
(a) Ген $P N P(167780,17 q 12-q 21)$.
(б) Структура. Полипептид из 36 аминокислот.
(в) Стимуляторы секреции
(i) Богатая белком пища
(ii) Гипогликемия
(iii) Голодание
(iv) Физическая нагрузка
(г) Функция. Угнетает секрецию экзокринной части поджелудочной железы.
(д) Недостаточность секреции панкреатического полипептида наблюдается у детей с синдромом Пра́дер-Вйлии.
д. G-клетки (D-клетки, согласно другой терминологии) секретируют гастрин в ранних возрастных группах в островках Ла́нгерханса и постоянно - в слизистой оболочке желудка (преимущественно в антральном отделе).

Гастрин

(a) Ген $G A S(137250,17 q 21)$ кодирует несколько идентичных последовательностей, известных под разными именами (гастрин I, гастрин II, минигастрин и т.д.).
(6) Структура. Пептид из 17 аминокислот.
(в) Стимулятор секреции - гастрин освобождающий гормон (GRP).
(г) Рецептор гастрина / холецистокинина (ген $C C K B R, 118445,11$ р15.5-p15.4) обнаружен в ЦНС и слизистой оболочке желудка.
(д) Функция. Стимулирует секрецию соляной кислоты в желудке.
(e) Синдром Зо́лингера-Эллисона. Большое количество гастрина вырабатывают опухоли островковых клеток поджелудочной железы.
e. Регенерация островковых эндокринных клеток не показана. В этом отношении эпителиальные островковые клетки представляют исключение из общего правила: эпителиальные клетки способны к регенерации.
2. Энтероэндокринные клетки находятся в слизистой оболочке кишечного типа, главным образом среди эпителиальных клеток крипт в кишечнике, в железах желудка, а

также в собственном слое слизистой оболочки желудка и кишечника, они особенно многочисленны в двенадцатиперстной кишке. Клетки слюнных и бру́ннеровьох желёз двенадцатиперстной кишки секретируют эпидермальный фактор роста (EGF), урогастрон.
Регуляция активности. При поступлении пищи в просвет ЖКТ различные эндокрин-
ные клетки под действием растяжения стенки, под влиянием самой пищи или изменения pH в просвете пищеварительного канала начинают выделять гормоны в ткани и в кровь. Активность энтероэндокринных клеток находится под контролем вегетативной нервной системы.

Вегетативная нервиая система

(a) Парасимпатический отдел. Стимуляция блуждающего нерва способствует высвобождению гормонов, усиливающих пищеварение (табл. 12-3 и 12-4).
(б) Симпатическнй отдел. Повышение активности чревных нервов оказывает противоположный эффект.
3. Нейроны. Из окончаний нервных волокон секретируется гастрин-рилизинг гормон; из окончаннй нервных волокон, из крови и из собственных (интрамуральных) нейронов пищеварительного тракта поступают пептидные гормоны: нейропептид Y (секретируется вместе с норадреналином), относящийся к кальцитониновому гену пептид.
4. Другие нсточники гормонов. Гистамин секретируют главным образом тучные клетки. Наконец, из разных источников поступают серотонин, брадикинин, простагландин E (табл. 12-5).
5. Функции биологически активных веществ в пищеварительном тракте
a. Адреналин и норадренадин подавляют перистальтику кишечника и моторику желудка, сужают просвет кровеносных сосудов.
6. Ацетилхолин стимулирует все виды секреции в желудке, двенадцатиперстной кишке, поджелудочной железе, а также моторику желудка и перистальтику кишечника.
в. Брадикинин стимулирует моторику желудка. Вазодилататор.
r. VIP стимулирует моторику и секрецию в желудке, перистальтику и секрецию в кишечнике. Мощный вазодидататор. Выделяется в ответ на стимуляцию блуждающего нерва.

Таблица 12-3. Влияние различных отделов вегетативной нервной системы на секрецию в пищеварительном тракте

	Бдумдаюпий нерв	पревные нервы
HCl	+	-
Соматостатин	-	-
Гастрин	+	-
Холеиистокинин	+	-

*** - уснление секреции, -- -еї подавленне
Таблица 12-4. Нейрогуморальная регулщця секреции холецистокинина

Прогестерон	+
Блужваощий нерв	$\mathbf{+}$
Чревные нервы	-
Эстрогены \rightarrow окситоцин \rightarrow блуждаюощий нерв	+

+ - уснление секреции, - - её подавление

Таблица 12.6. Источники биологически активных веществ в пищеваритедьном тракте

Гормон	Эпдокринине цлетии	Эдементы эптерадьвон нераной системи
Вещество P	+	+
Гастрнн	+	+
Гастрин-рилизинг гормон	+	+
Гистамин	+	
Глокагон	+	
Желудочный ингибирующий пептид (GIP)	+	
Инсулин	+	
Метионин-энкефалин	+	+
Мотилин	+	
Нейропептид Y	+	+
Нейротензик	+	+
Относящийся х кальцитониновому гену пептид	+	+
Секретик	+	+
Серотонин	+	
Соматостатин	+	
Холецистокинин	+	
VIP	+	

Знаком «+ə отмечены гормоны, вырабатываемые указанными структурами
д. Вещество \mathbf{P} вызывает незначительную деполяризацию нейронов в ганглиях межмышечного сплетения, сокращение ГМК.
е. Гастрин стимулирует секрецию слизи, бикарбоната, ферментов, соляной кислоты в желудке, подавляет эвакуацию из желудка, стимулирует перистальтику кишечника и секрецию инсулина, стимулирует рост клеток в слизистой оболочке.
ж. Гастрнн-рилизннг гормон стимуиирует секрецию гастрина и гормонов поджелудочной железы.
3. Гистамин стимулирует секрецию в железах желудка и перистальтику.
и. Глюкагон стимулирует секрецию слизи и бикарбоната, подавляет перистальтику кишечника.
к. Желудочный ингибирующий пептид подавляет желудочную секрецию и моторику желудка.
л. Мотилин стимулирует моторику желудка.
м. Нейропептид Y подавляет моторику желудка и перистальтику кишечника, усиливает вазоконстрикторный эффект норадреналина во многих сосудах, включая чревные.
н. Пептид, связанный с кальцитониновым геном, подавляет секрецию в желудг ке, вазодилататор.
0. Простагландин Е стимулирует секрецию слизи и бикарбоната в желудке.
п. Секретин подавляет перистальтику кишечника, активирует эвакуацию из желудка, стимулирует секрецию сока поджелудочной железы.
p. Серотонин стимулирует перистальтику.
с. Соматостатин подавляет все процессы в пищеварительном тракте.
т. Холецистокинин стимулирует перистальтику кишечника, но подавляет моторику желудка; стимулирует поступление жёлчи в кишечник и секрецию в поджелудочной железе, усиливает высвобождение инсулина. Холецистокинин имеет значение для процесса медленной эвакуации содержимого желудка, расслабления сфинктера Одди.
у. Эпидермальный фактор роста (EGF) стимулирует регенерацию клеток эпителия в слизистой оболочке желудка и кишечника.
6. Влияние гормонов на основные процессы в пищеварительном тракте
a. Секреция слизи и бикарбоната в желудке. Стимулируют: гастрин, гастринрилизинг гормон, глюкагон, простагландин E, эпидермальный фактор роста (EGF). Подавляет соматостатин.
б. Секреция пепсина и соляной кислоты в желудке. Стимулируют ацетилхолин, гистамин, гастрин. Подавляют соматостатин и желудочный ингибирующий пептид.
в. Моторика желудка. Стимулируют ацетилхолин, мотилин, VIP. Подавляют соматостатин, холецистокинин, адреналин, норадреналин, желудочный ингибирующий пептид.
r. Перистальтика кишечника. Стимулируют ацетилхолин, гистамин, гастрин (подавляет эвакуацию из желудка), холецистокинин, серотонин, брадикинин, VIP. Подавляют соматостатин, секретин, адреналин, норадреналин.
д. Секреция сока поджелудочной железы. Стимулируют ацетилхолин, холецистокинин, секретин. Подавляет соматостатин.
е. Секреция инсулина. Стимулируют ацетилхолин, гастрин-рилизинг гормон, холецистокинин, VIP, увеличение концентрации глюкозы. Подавляют соматостатин, адреналин, норадреналин.
※. Желчеотделение. Стимулируют гастрин, холецистокинин.

V. РОТОВАЯ ПОлОСТЬ

Для ротовой полости характерна слизистая оболочка кожного типа. Под ней располагается подслизнстая оболочка, отсутствующая на дорсальной поверхности языка, в области дёсен и твёрдого нёба. О мышечной оболочке приходится говорить условно, это поперечнополосатые мышцы языка, мышцы щек и т.д.
А. Слизистая оболочка содержит эпителий и собственный слой. Мышечного слоя слизистой оболочки, как правило, нет.

1. Эпителий - многослойный плоский неороговевающий (исключение - разной степени абортивное ороговение на вершинах нитевидных сосочков языка). Регенерация эпителия происходит постоянно, стволовые клетки расположены на базальной мембране; характерна исключительная выраженность репаративной регенерацни эпителия.
2. Собственный слой, как и в коже, содержит много выпячиваний, вдающихся в эпителий в виде сосочков.
Сосочки языка расположены преимущественно по дорсальной поверхности языка. В эпителии всех сосочков, кроме нитевидных, расположены вкусовые почки (глава 8.4 III, рис. 12-37).
(1) Нитевидные (рис. 12-35).
(2) Грибовидные. Их количество - до 103, рисунок расположения индивидуален.
(3) Желобоватые. Количество - от 6 до 12, расположены на границе средней и задней трети языка.
(4) Листовидные (рис. 12-36). Количество - до 8, у взрослых они атрофированы.
Б. Железы экзокринные парные - большие слюнные, множество мелких желёз в слизистой и подслизистой оболочках. Продукты секреции: слизь, ферменты. В секреторных отделах, как и в любой эпителиальной железе эктодермального происхождения, обязательно присутствуют миоэпителиальные клетки.
Эндокринные клетки имеются в составе больших слюнных желёз, вырабатывают фактор роста нервов (NGF) и эпидермальный фактор роста (EGF).
В. Двигательная иннервация желёз и мышц
3. Поперечнополосатые мышцы - двигательная соматическая, типичные нервно-мышечные сянапсы, нейромедиатор - ацетилхолин, рецепторы на постсинаптической мембране - н-холинорецепторы.
4. ГМК и миоэпителиальные клетки - вегетативная. Нейромедиаторы: ацетилхолин (м-холинорецепторы), норадреналин и, вероятно, разные нейропептиды.
5. Секреторные клетки экзокринных желёз получают вегетативную иннервацию.
Г. Лимфоидный аппарат (рис. 12-47). Мощные скопления лимфатических фолликулов в собственном слое слизистой оболочки.

V. зУбы

А. Анатомия (рис. 12-13). В зубе различают коронку и корень (или корни). Корни зубов фиксированы в зубных альвеолах (зубные лунки). Узкая область между коронкой и корнем шейка зуба. Полость зуба содержит пульпу. Через канал в корне зуба в пульпу входят кровеносные сосуды и нервы. Дентин покрыт в области коронки эмалью, а в области корня другим типом минерализованной ткани - цементом. Между цементом и костной тканью альвеолярных перегородок расположена периодонтальная связка (периодонт), образованная плотной соединительной тканью. В области шейки периодонтальная связка граничит со слизистой оболочкой дёсен. Пародонт - более широкое понятие. Под ним подразумевают периодонт, а также находящиеся в связи с ним структуры: прилегающие участки слизистой оболочки десны, участки кости зубных лунок. Части зуба и пародонта по их физическим свойствам подразделяют на твёрдые (минерализованные) и мягкие (неминерализованные). Твёрдые компоненты: эмаль, дентин, цемент, альвеолярная кость. Мягкие части: пульпа зуба, слизистая оболочка прилежащей десны, надкостница альвеолярных отростков и периодонт.

Рис. 12-13. Зуб. Сагиттальный разрез. Корень зуба фиксирован в зубной альвеоле кости, окружён периодонтом, который при помощи цемента прикреплён к дентину корня. Коронка покрыта эмалью. Расположенный под ней дентин продолжается в корень зуба. Полость зуба заполнена пульпой (из Leason $T S$, Leason $C R$, 1970]
Б. Эмадь. Толщина эмали достигает 2,5 мм по режущему краю или в области жевательных бугорков коренных зубов и уменьшается по мере приближения к шейке. В коронке под эмалью расположен характерно исчерченный дентин, сплошной массой продолжающийся в корень зуба. В образовании эмали (синтез и секреция компонентов её органического матрикса) участвуют клетки, отсутствующие в зрелой эмали и прорезавшемся зубе энамелобласты (амелобласты).

1. Свойства. Высокий показатель преломления - 1,62 , плотность $-2,8-3,0$ г $/$ см 3. Эмаль самая твёрдая ткань организма. Однако, эмаль хрупкая. Её проницаемость ограничена, хотя в эмали имеются поры, через которые могут проникать водные и спиртовые растворы низкомолекулярных веществ.
2. Состав. Органические вещества, неорганические вещества, вода. Их относительное содержание в весовых процентах: 1:96:3. По объёму: органических веществ -2%, воды 9%, неорганических веществ - до 90%. Фосфат кальция, входящий в состав кристаллов гидроксиапатита, составляет $3 / 4$ всех неорганических веществ. Кроме фосфата, в небольшом количестве присутствуют карбонат и фторид кальция -4%. Из органических соединений имеется небольшое количество белка (две фракции: растворимая в воде и нерастворимая в воде и слабых кислотах). Кроме того, в эмали обнаружено небольшое количество углеводов и липидов.
3. Призмы. Структурная единица эмали - призма диаметром около 5 мкм. Ориентация эмалевых призм - почти перпендикулярная по отношению к границе между эмалью и дентином. Соседние призмы формируют параллельные пучки. На параллельных по отношению к поверхности эмали срезах призмы имеют форму гнезда для ключа: удлинённая часть призмы одного ряда ложится в другом ряду между двумя телами соседних призм. Благодаря такой форме, в эмали почти нет пространств между призмами. Имеются призмы и иной (в сечении) формы: овальные, неправильных очертаний и т.д. Перпендикулярный по отношению к поверхности эмали и к эмалево-дентинной границе ход призм имеет S-образные изгибы. Можно сказать, что призмы винтообразно изогнуты.
4. Беспризменная эмаль. На границе с дентином, а также с поверхности эмали призмы отсутствуют (беспризменная эмаль). Окружающий призмы материал также имеет иные характеристики и носит имя чоболочка призмы* (т.н. склеивающее, или спайное вещество), толщина такой оболочки около 0,5 мкм, местами оболочка отсутствует.
5. Кристаллы. Эмаль - исключительно твёрдая ткань, что объясняется не просто высоким содержанием в ней солей кальция, но и тем, что фосфат кальция находится в эмали в виде кристаллов гидроксиапатита $\mathrm{Ca}_{10}\left(\mathrm{PO}_{4}\right)_{6}(\mathrm{OH})_{2}$ - крупных, шестиугольных в сечении палочковидных кристаллов размером $25 \times 40 \times 160$ нм. Соотношение Ca / P в кристаллах в норме варьирует от 1,3 до 2,0 . При увеличении этого коэффициента устойчивость эмали повышается. Кроме гидроксиапатита, присутствуют и другие кристаллы. Соотношение разных типов кристаллов: гидроксиапатит -75%, карбонатапатит -12%, хлорапатит $-4,4 \%$, фторапатит $-0,7 \%$.
6. Микропоры и поры. Между кристаллами присутствуют микроскопические пространства (микропоры), совокупность которых и является той средой, в которой возможна диффузия веществ. Помимо микропор, в эмали имеются пространства между призмами поры. Микропоры и поры - материальный субстрат проницаемости эмали. Проницаемость эмали крайне невелика. И далеко не для всех веществ. Сравнительно небольшого размера молекулы воды, ионы, витамины, моносахара, аминокислоты могут медленно диффундировать в веществе эмали. Проницаемость эмали увеличивается под влиянием кислот, спирта, при дефиците кальция, фосфора, фтора.
7. Линии. В эмали присутствует три типа линий, отражающих неравномерный во времени характер образования эмали: поперечная исчерченность эмалевых призм, линии Ре́тциуса и т.н. линия новорождённости.
a. Поперечная исчерченность эмалевых призм имеет период около 5 мкм и соответствует суточной периодичности роста призм.
б. Линии Ре́тииуса. За счёт различий в оптической плотности из-за меньшей минерализации на границе между элементарными единицами эмали формируются линии Ре́тииуса. Они расположены параллельно и косо на расстоянии от 20 до 80 мкм и имеют толщину 4-150 мкм. Линии Ре́тциуса могут прерываться, их особенно много в области шейки. Эти линни не достигают поверхности эмали в области жевательных бугорков и по режущему краю зуба.
Элементарные единицы эмали - прямоугольные пространства, отграниченные друг от друга вертикальными линиями - границами между призмами и горизонтальными линиями (поперечная исчерченность призм). В связи с неодинаковой скоростью образования эмали в начале и в конце амелогенеза имеет значение и величина элементарных единиц, различающаяся между поверхностными и глубокими слоями эмали. Там, где линин Ретциуса достигают поверхности эмали, присутствуют борозды - пернхймы, параллельными рядами идущие по поверхности эмали зуба.
в. Линия новорождённости видна как косая полоса, хорошо просматриваемая на фоне призм и проходящая под острым углом к поверхности зуба. Эта линия состоит преимущественно из беспризменной эмали. Линия новорождённости образуется в результате изменений в режиме формирования эмали при рождении. Эти линии имеются в эмали всех временных зубов и, как правило, в эмали первого премоляра.
8. Полосы Ха́нтера-Іре́гера в эмали хорошо видны в поляризованном свете в виде чередующихся полос различной оптической плотности, направляющихся от границы между дентином практически перпендикулярно к поверхности эмали. Полосы отражают факт отклонения призм от перпендикулярного расположения по отношению к поверхности эмали или к эмалево-дентинной границе.
9. Поверхность. Поверхностные участки эмали плотнее подлежащих её частей, здесь выше концентрация фтора; имеются борозды, ямки и возвышения, беспризменные участки, поры, микроотверстия. На поверхности эмали могут появиться разные наслоения, в т.ч. колонии микроорганизмов в сочетании с аморфной органикой (зубные бляшки). При отложенин в область бляшки неорганических веществ образуется зубной камень.
B. Дентин - разновидность минерализованной ткани, образует основную массу зуба. Дентин в области коронки покрыт эмалью, в области корня - цементом. Дентин окружает полость зуба в области коронки, а в области корня - корневой канал.
10. Свойства. Дентин плотнее костной ткани и цемента, но много мягче эмали. Плотность дентина - $2,1 г /$ см 3. Проницаемость дентина значительно больше, чем проницаемость эмали, что связано не столько с проницаемостью самого вещества дентина, сколько с наличием в минерализованном веществе дентина канальцев.
11. Состав. Органические вещества - 18%, неорганические вещества - 70%, вода 12%. По объёму: органические вещества - 30%, неорганическне вещества - 45%, вода - 25%. Из органических веществ главный компонент - коллаген, значительно меньше хондроитинсульфата и липидов. Дентин сильно минерализован, основной неорганический компонент - кристаллы гидроксиапатита. Помимо фосфата кальция, в дентине присутствует карбонат кальция.
12. Канальцы. Дентин пронизан канальцами. Направление канальцев - от границы между пульпой и дентином к дентинно-эмалевому и дентинно-цементному соединениям. Дентинные канальцы расположены параллельно друг другу, но имеют извнлистый ход (S образный на вертикальных шлифах зуба). Диаметр канальцев - от 4 мкм ближе к пульпарному краю дентина до 1 мкм по периферии дентина. Ближе к пульпе на долю канальцев приходится до 80% объёма дентина, ближе к дентинно-эмалевому соединению -

около 4%. В корне зуба ближе к дентинно-цементной границе канальцы не только ветвятся, но и формируют петли (область зернистого слоя То́мса).
4. Неоднородность минерализации. На проходящем параллельно эмалево-дентинному соединению срезе видны неоднородности минерализации дентина. Просвет канальцев охвачен двойной концентрической манжеткой с плотной периферией - околоканальцевый дентин, зубные, или ноймановские влагалища. Дентин но́ймановских влагалищ минерализован сильнее, чем межканальцевый дентин. Самые наружные и самые внутренние части околоканальцевого дентина минерализованы слабее срединной части манжетки. В околоканальцевом дентине нет фибрилл коллагена, а кристаллы гидроксиапатита организованы различно в околоканальцевом и межканальцевом дентине. Ближе к предентину околоканальцевый дентин практически отсутствует. Околоканальцевый дентин образуется постоянно, поэтому у взрослых околоканальцевого дентина существенно больше, чем у детей; соответственно проницаемость дентина у детей выше.
5. Характер дентина в разных частях зуба. В разных частях зуба дентин неоднороден.
a. Первичный дентин сформирован в ходе массового дентиногенеза. В плащевом (поверхностном) и околопульпарном дентине ориентация коллагеновых волокон различна. Плащевой дентин минерализован меньше околопульпарного дентина.
(1) Плащевой дентин расположен на границе с эмалью.
(2) Околопульпарный дентин - основная масса дентина.
(3) Зернистый и гиалиновый слои дентина. В корне зуба между основной массой дентина и бесклеточным цементом расположены зернистый (слой То́мса) и гиалиновый слои дентина. В гиалиновом слое ориентация волокон войлокообразная. Зернистый слой состоит из чередующихся участков гипо- или совсем неминерализованного дентина (интерглобулярные пространства) и полностью минерализованного дентина в виде шаровидных образований (дентинные шары, или калькосфериты).
6. Вторичный дентин, или дентин раздражения расположен между основной массой дентина и предентином. Вторичный дентин постоянно образуется в течение всей жизни.
в. Регулярный дентин (организованный дентин) расположен в области корня зуба.
г. Нерегулярный дентин раздражения (неорганизованный дентин) расположен в верхушечной части полости зуба.
6. Предентин, или неминерализованный дентин расположен между слоем одонтобластов и дентина. Предентин - новообразованный и неминерализованный дентин. Между предентином и околопульпарным дентином располагается тонкая пластинка минерализующегося предентина - промежуточный дентин - фронт обызвествления.
7. Линии. В дентине имеется несколько типов структурных линий. Линии, как правило, перпендикулярны по отношению к дентинным канальцам. Различают следующие основные типы линий: связанные с изгибами дентинных канальцев линии Шре́еера и Оуэна, связанные с неравномерной минерализацией, нарушениями минерализации и её ритмичностью - линии Эбнера и линии минерализации. Кроме того, имеется линия новорождённости.
a. Оуэна линии видны в поляризованном свете и формируются при наложении друг на друга вторкчных изгибов дентинных канальцев. Контурные линии Оуэна довольно редки в первичном дентине, они чаще расположены на границе между первичным и вторичным дентином.
б. Эбнера линии расположены перпендикулярно канальцам на расстоянии около 5 мкм друг от друга.
в. Минерализации линии формируются за счёт неравномерной скорости обызвествления при дентиногенезе. Так как фронт минерализации не обязательно строго параллелен предентину, ход линий может быть извилистым.
г. Новорождённости линии, как и в эмали, отражают факт изменения режима дентиногенеза при рождении. Эти линии выражены в молочных зубах и в первом постоянном моляре.
Г. Цемент покрывает корень зуба и утолщается к верхушке корня. Различают бесклеточный цемент, расположенный преимущественно в верхней части корня, и клеточный цемент, содержащий цементоциты. Бесклеточный цемент состоит из коллагеновых волокон и аморфного вещества. Клеточный цемент напоминает грубоволокнистую костную ткань, но не содержит кровеносных сосудов.
Д. Пульпа - мягкая часть зуба, представлена рыхлой соединительной тканью и состоит из периферического, промежуточного и центрального слоёв. Периферический слой содержит одонтобласты, отростки которых уходят в дентинные канальцы. Одонтобласты - аналоги остеобластов кости. В промежуточном слое расположены предшественники одонтобластов и формирующиеся коллагеновые волокна. Центральный слой пульпы - рыхлая волокнистая соединительная ткань с множеством анастомозирующих капилляров и нервных волокон, терминали которых разветвляются в промежуточном и периферическом слоях.
Е. Иннервация. Различают иннервацию собственно зуба и иннервацию периодонта.

1. Зуб. В пульпе зуба нервные волокна заканчиваются на кровеносных сосудах и формируют сплетение вблизи внутренней поверхности дентина. Тонкие безмиелиновые волокна проникают на некоторое расстояние в дентинные канальцы. Нервные волокна в дентинных канальцах могут формировать варикозные расширения. В чувствительных нервных окончаниях присутствуют митохондрии, различных размеров везикулы, микротрубочки и нейрофиламенты. В периферической части пульпы ветви безмиелиновых волокон проходят между телами одонтобластов. Здесь волокна окружены шва́нновскими клетками.
2. Периодонт. Нервные волокна проходят через альвеолярную кость и разветвляются на дорсальной и вентральной поверхностях корня среди коллагеновых волокон периодонтальной связки. Здесь присутствуют быстро и медленно адаптирующиеся механорецепторы, обладающие направленной чувствительностью. Механорецепторы периодонтальной связки реагируют на механическую нагрузку, испытываемую зубом при жевании.

VII. ПИЩЕВОД

А. Развитие. Трубка пищевода формируется из общего зачатка пищевода, глотки и дыхательных путей (см. главу 13).

1. Эпителий пищевода, сначала однослойный, постепенно преобразуется в многослойный плоский.
2. Мышечная оболочка в месте впадения пищевода в желудок формирует нижний сфинктер пищевода.

Расстройства моторики пищевода

(1) Гастроэзофагеальный рефлю́кс - перемещение содержимого желудка в пищевод, рассматривается как проявление незрелости моторики (низкий тонус нижнего сфинктера пищевода).
(2) Ахалазия - расстройство моторики пищевода в виде недостаточной перистальтики пищевода.
3. Врождённые пороки развития. Атрезия пищевода, трахеопищеводный свищ, врождённый стеноз пищевода - наиболее частые врождённые пороки.
a. Атрезия пищевода - отсутствие его сообщения с ЖКТ. Встречается изолированно, но, как правило, сочетается с соустьем между трахеей и дистальным отделом пищевода (трахеопищеводный свищ). Эти пороки развиваются при формировании трахеопищеводной перегородки (рис. 13-1).
6. Трахеопищеводный свищ возникает в результате неполного расщепления первичной кишки на пищевод и трахею.
в. Стеноз пищевода встречается на уровне верхней (реже), средней и нижней (чаще) трети пищевода.
Б. Строение пищевода рассмотрено в разделе препараты (см. рис. 12-40).

VIII. ЖЕАУロOK

А. Пренатальное развитие

1. Анатомия. $K 3$ неделям внутриутробного развития формируется первичная кишка, к 4-6 неделям первичная кишка подразделяется на переднюю, среднюю и заднюю кишку. Пороки ЖКТ возникают на этом этапе развития или из-за дефектов при вращении кишечной трубки, или из-за сосудистых аномалий. Желудок закладывается в виде расширения конечного отдела передней кишки. Его развитие заканчивается к 5 неделе внутриутробного периода. Пороки развития желудка встречаются редко.
2. Функциональнос развитие желудка начинается со второго триместра беременности. Кислотопродуцирующая функция желудка развивается после 32 -й недели внутриутробного периода и в течение первых 24 часов жизни быстро нарастает.
Б. Строение (рис. 12-14, рис. 12-41-12-43). Стенку желудка образуют слизистая, подслизистая, мышечная и серозная оболочки. Слизистая и подслизистая оболочки формируют продольные складки, исчезающие в растянутом органе. Углубления в слизистой оболочке желудочные ямки.
3. Слизистая оболочка. В ней различают эпителий, собственный и мышечный слои.
а. Поверхностный эпителий (рис. 12-15). Слизистую оболочку покрывает однослойный железистый эпителий, вырабатывающий муцины (слизь) и бикарбонат. Поверхностный эпителий слизистой оболочки желудка выполняет защитную функцию, в т.ч. путём формирования слизисто-бикарбонатного барьера. Продолжительность жизни клеток железистого эпителия - 3 суток.
(1) Слизисто-бнкарбонатный барьер защищает слизистую оболочку от действия кислоты, пепсина и других потенциальных повреждающих агентов. Некоторые компоненты барьера важны для реализации защитной функции эпителия.
(а) Слизь постоянно секретируется на поверхность эпителия.
(6) Бикарбонат (ионы HCO_{3}^{-}), секретируемый поверхностными слизистыми клетками (рис. 12-16), имеет нейтрализуюшее действие.
(z) $\mathbf{p H}$. Слой слизи имеет градиент pH . На поверхности слоя слизи pH равен 2 , а в примембранной части более 7 .
(r) \mathbf{H}^{+}. Проннцаемость плазмолеммы слизистых клеток желудка для H^{+}различна. Она незначительна в мембране, обращённой в просвет органа (апикальной), и достаточно высока в базальной части. При механическом повреждении слизистой оболочки, при воздействии на неё продуктов окисления, алкоголя, слабых кислот или желчи концентрация H^{+}в клетках возрастает, что прнводит к их гибели и разрушению барьера.
(д) Плотные контакты между поверхностными клетками эпителия. При нарушении их целостностн нарушается функция барьера.
(e) Регуляция. Секрецию бикарбоната и слизи усиливают глюкагон, простагландин E , гастрин, эпидермальный фактор роста (EGF). Для предупреждения повреждения и восстановления барьера применяют антисекреторные агенты (например, блокаторы гистаминовых рецепторов), простагландины, гастрин, аналоги сахаров (например, сукральфат).
(х) Разрушение барьера. При неблагоприятных условиях барьер разрушается в течение нескольких минут, происходят гибель клеток эпителия, отёк и крово-

Рис. 12-14. Слизистая оболочка в различвых отделах мелудка содержит многочисленные углубления - желудочные ямки, наиболее глубокие в пилорической части. В собственном слое присутствуют кардиальные, фундальные и пилорические железы. Их выводные протоки открываются на дне желудочных ямок. В секреторном отделе желёз различают шейку, тело и дно. Кардиальные железы вырабатывают преимущественно слизь; фундальные железы вырабатывают пепсиноген, соляную кислоту и некоторое количество слизи; пилорические железы имеют более разветвлённые секреторные отделы, секретируют слизь [из Junqueira LC, Carneim J, 1991]

излияния в собственном слое слизистой оболочки. Существуют факторы, неблагоприятные для поддержания барьера.
(i) Нестероидные противовоспалительные препараты (например, аспирин, индометацин).
(ii) Этанол.
(iii) Соля жёлчных кислот.
(iv) Helicobacter pylori - грамотрицательная бактерия, выживающая в кислой среде желудка. Helicobacter pylori поражает поверхностный эпителий желудка и разрушает барьер, способствуя развитию гастрита и язвенного дефекта стенки

Рис. 12-15. Основные клеточные типы в слизистой оболочке хелудка: \mathbf{A} - слизистая клетка; Б - главная клетка; B - париетальная клетка; Г - энтероэндокринная клетка [из Kopf-Maier P. Merker H-J, 1989]

желудка. Этот микроорганизм выделяют у 70% больных язвенной болезнью желудка и 90% больных язвой двенадцатиперстной кишки или антральным гастритом.
(2) Регенерация эпителия происходит за счёт стволовых клеток, расположенных на дне желудочных ямок; время обновления клеток - около 3 суток.
Стимуляторы регенерации
(i) Гастрин из эндокринных клеток желудка.
(ii) Гастрин-рилизинг гормон из эндокринных клеток и окончаний волокон блуждающего нерва.
(iii) Эпидермальный фактор роста (EGF), поступающий из слюнных, пилорических желёз, желёз двенадцатиперстной кишки и других источников.

Рис. 12-16. Механизм секреции $\mathbf{H C O}_{3}^{-}$эпителиальными клетками слизистой оболочки желудка и двенадцатиперстной кишки:
А - выход HCO_{3}^{-}в обмен на Cl стимулируют некоторые гормоны (например, глюкагон), и подавляет блокатор транспорта
Cl фуросемид; Б - активный транспорт HCO_{3}^{-}, не зависящий от транспорта Cl^{-}; В и Г - транспорт HCO_{3}^{-}через мембрану базальной части клетки внутрь клетки и по межклеточным пространствам (зависит от гидростатического давления в подэпителиальной соединительной ткани слизистой оболочки) (из Flemstrom, 1987]
б. Собственный слой. Рыхлая волокнистая соединительная ткань с большим количеством ретикулиновых волокон, массой лимфоидных клеток и лимфатических фолликулов. Энтероэндокринные клетки расположены как одиночно, так и в составе желёз. Железы, в особенности в fundus, практически полностью занимают всю толщу собственного слоя.
(1) Фундальные щелезы (рис. 12-42). Клетки: париетальные, главные, слизистые и энтероэндокринные. Секреты: ферменты, внутренний фактор Ка́сла, соляная кислота, муцины.
(a) Париетальная клетка (рис. 12-17) содержит многочисленные митохондрии и систему внутриклеточных канальцев.
(i) Плазмолемма. Организация плазматической мембраны париетальных клеток приведена на рисунках 12-17 и 12-18.
[I] Апикальная клеточная мембрана, обращённая в выводной проток железы, содержит $\mathrm{H}^{+} \mathrm{K}^{\dagger} \cdot{\text { ATФазу (см. главу } 2 \text { IB1в (1)), выкачивающую из клетки } \mathrm{H}^{+}}^{+}$ в обмен на K^{+}.
[II] Базальная плазматическая мембрана содержит насосы, один из которых контролирует обмен внутриклеточного Na^{+}на внеклеточный H^{+}и предотвращает закисление клетки, а другой - обмен внутриклеточного Cl^{-}на внеклеточные анионы HCO_{3}^{-}, предотвращающий защелачивание клетки.
[1II] В покое клетка секретирует хлор. В активированном состоянии усиливается работа $\mathrm{H}^{+}, \mathrm{K}^{+}$-АТФазы, в результате чего возрастает транспорт H^{+}из клетки. Одновременно в $2-3$ раза увеличивается транспорт Cl^{-}в обмен на HCO_{3}^{-}. В итоге внутриклеточный pH остаётся нензменным.
[IV] $\mathbf{H}^{+}, \mathbf{K}^{\dagger}$-АТФаза принадлежит семейству катион-транспортирующих АТФаз P . типа. Как и $\mathrm{Na}^{+}, \mathrm{K}^{+}$- ${ }^{\text {TТФаза, является гетеродимером и состоит из большой ката- }- \text { - }}$ литической α-СЕ и малой, но интенснвно гликозилированной β-СЕ. В сыворотке

Апикальная часть

Рис. 12-17. Парнетальвая клетка. Система внутриклеточных канальцев значительно увеличивает площадь поверхности плазматической мембраны. В многочисленных митохондриях вырабатывается АТФ для обеспечения работы ионных насосов плазматической мембраны [из Lentz T, 1971]

больных пернициозной анемней и атрофическим гастритом присутствуют AT против β-СЕ.
[V] При стимуляции секреции усиливается работа $\mathrm{H}^{+}, \mathrm{K}^{+}-А Т Ф а з ы, ~ в ~ р е з у л ь т а-~$ те чего возрастает транспорт H^{+}из клетки. Одновременно в $2-3$ раза увеличивается транспорт Cl^{-}в обмен на HCO_{3}^{-}. В итоге внутриклеточный pH остаётся неизменным.
(ii) Функции
[I] Секреция соляной кислоты.
[II] Синтез и сехреция внутреннего фактора, одного из связывающих витамин B_{12} (кобаламин) белков. Кобаламин не всасывается в желудке, он соединяется здесь с внутренним фактором и в комплексе с ним транспортируется в тонкий кишечник, где и происходит всасывание витамина B_{12}.
(iii) Регуляторы секреции (рис. 12-19). Париетальная клетка активируется через м-холинорецепторы (блокатор - атропин), H_{2}-рецепторы гистамина (бло-

Апикальная поверхность

Базальная поверхность
Рис. 12-18. Париетальная клетка:транспорт ионов и секреция НСІ. $\mathrm{Na}^{+}, \mathrm{K}^{+}$-АТФаза участвует в транспорте K^{+}внутрь клетки. Cl^{-}входит в клетку в обмен на HCO_{3}^{-}через мембрану боковой поверхности, а выходит через апикальную мембрану. Одно из важнейших звеньев - выход H^{+}через апикальную мембрану по всей поверхности внутриклеточных канальцев в обмен на K^{+}при помощи $\mathrm{H}^{+}, \mathrm{K}^{+}$-АТФазы [из Forte, Wolosin, 1987]

катор - циметидин) и рецепторы гастрина (блокатор - проглюмид). Указанные блокаторы или их аналоги, а также ваготомия используются для подавления секреции соляной кислоты. Существует ещё один спосо6 понизить выработку соляной кислоты - блокада $\mathrm{H}^{+}, \mathrm{K}^{+}$-АТФазы.
[I] Стимуляторы - гистамин, ацетилхолин, гастрин.
[II] Ингибиторы - соматостатин и простагландины.
(б) Главная клетка (рис. 12-15) синтезирует и секретирует предшественники пепсина (пепсиноген) и липазу, имеет хорошо развитые гранулярную эндоплазматическую сеть и комплекс Го́льджси. В апикальной части сосредоточены зимогенные (секреторные) гранулы.
(в) Слизистая клетка (рис. 12-15) имеет выраженные цистерны комплекса Го́льджи, много митохондрий. В апикальной части находятся крупные секреторные гранулы, содержащие муцин.
(г) Стимуляторы секреции желудочного сока
(i) Пепсин с оптимумом ферментной активности при кислых значениях pH .
(ii) Cl^{-}и H \mathbf{H}^{+}(соляная кислота из париетальных клеток).
(iii) Гастрин энтероэндокринных клеток.
(iv) Гмстамин из тучных клеток и из крови.
(v) Ацетилхолин из двигательных окончаний блуждающего нерва и собственных двигательных нейронов желудка (через м-холинорецепторы париетальных и главных клеток).
(д) Ингибиторы и блокаторы секреции желудочного сока

Рис. 12-19. Регуляции активности париетальных клеток. Стимулирующее влияние гистамина опосредуется через цАМФ, тогда как эффекты ацетилхолина и гастрина - через увеличение притока Ca^{2+} в клетку. Простагландины снижают секрецию HCl , ингибируя аденилатциклазу, что приводит к уменьшению уровня внутриклеточного цАМФ. Блокатор $\mathrm{H}^{+}, \mathrm{K}^{+}$-АТФазы (например, омепразол) снижает выработку HCl . ПК - протеинкиназа, активируемая цАМФ; фосфорилирует мембранные белки, усиливая работу ионных насосов [из Pandol SJ, Isenberg JI, 1990]
(i) Желудочныв̆ ингибирующий пептид (GIP) и секретин (преимущественно из эндокринных клеток двенадцатиперстной кишки).
(ii) Соматостатин.
(iii) Блокаторы (антагонисты) рецепторов гастрина, секретина, гистамина и ацетилхолина.
(2) Пилорические и кардиальные железы (см. рис. 12-14, 12-40 и 12-43).
2. Мышечная оболочка (рис. 12-44). Стеноз привратника (пилоростеноз) - частая причина рвоты и нарушения эвакуации из желудка - встречается примерно у 1 из 500 детей грудного возраста (у мальчиков в 4 раза чаще, чем у девочек).

IX. ТОНКИЙ КИШЕЧНИК

А. Развитие

1. Двенадцатиперстная кишка образуется из конечного отдела передней кишки и начального отдела средней, этот зачаток растёт и формирует петлю.
2. Тощая и подвздошная кишка формируются из оставшейся части средней кишки. Между 5 и 10 неделями внутриутробного развития петля растущей средней кишки «выталкивается» из брюшной полости в пуповину, а брыжейка подрастает к петле. К концу этого периода петля кишечной трубки «возвращается* в брюшную полость, происходят её вращение (поворот на 270°) и рост как в каудальном, так и в проксимальном направлениях.

3. Пороки развития

a. Атрезия тонкого кишечника, по-видимому, является результатом сосудистой аномалии, возникающей во время вращения кишечника.
6. Неполный поворот происходит в результате нарушения нормального вращения и фиксации, что предрасполагает к развитию странгуляции.
в. Омфалоцеле - грыжевое выпячивание внутренних органов в пупочный канатик. Из-за нарушений возврата кишечной петли образуется соединительнотканный мешок, содержащий кишечник и/или печень или обе структуры.
г. Расщелина передней брюшной стенки (гастросхи́зис [гастроши́зис]) возникает в результате дефекта при закрытии передней брюшной стенки. Через образовавшееся отверстие выпячивается участок кншки.
д. Дивертикул Ме́ккеля - остаток не полностью редуцированного желточного стебля в нижней трети подвздошной кишки, возможная причина кишечной непроходимости.
Б. Строение (рис. $\mathbf{1 2 - 4 4}$ и 12-45). Оболочки тонкого кишечника: слизистая, подслизистая, мышечная и серозная. Циркулярные складки образованы выростами слизистой и подслизистой оболочек. Складки присутствуют в дистальной части двенадцатиперстной кишки, в тощей кишке и в проксимальной части подвздошной кишки. В подслизистой оболочке двенадцатиперстной кишки расположены секреторные отделы бру́ннеровых желёз.
Слизнстая оболочка кишечного типа показана на рисунках 12-20, 12-45. В слизистой циркулярные складки, ворсинки, крипты. Ворсинки - выросты слизистой оболочки, крипты - трубчатые углубления. За счёт циркулярных складок площадь всасывания увеличивается в 3 раза, за счёт ворсинок и крипт - в 10 раз и за счёт микроворсинок каёмчатых клеток - в 20 раз. Суммарно складки, ворсинки, крипты и микроворсинки обеспечивают увеличение площади всасывания в 600 раз. Мышечный слой слизистой оболочки обязателен, часть ГМК локализована в сердцевине ворсинки. Эндокринные клетки присутствуют повсеместно в эпителии слизистой оболочки, главным образом, в криптах и отчасти в собственном слое слизистой оболочки. Особенно много эндокринных клеток в двенадцатиперстной кишке.
a. Эпителий - однослойный цилиндрический каёмчатый (рис. 12-21) - содержит каёмчатые, бокаловидные, энтероэндокринные, па́нетовские и камбиальные клетки.
(1) Каёмчатые клетки (энтероциты) имеют более 1000 микроворсинок на апикальной поверхности. Именно здесь присутствует гликокаликс (глава 2 I Б 4). Эти клетки всасывают расщеплённые белки, жиры и углеводы (см. подпись к рисунку 12-21).
(a) Микроворсинки образуют всасывательную, или щёточную каёмку на апикальной поверхности энтероцитов. Микроворсинки увеличивают поверхность всасывания в 20 раз. Через эту поверхность происходит активный и избирательный транспорт из просвета тонкого кишечника через каёмчатые клетки, через базальную мембрану эпителия, через межклеточное вещество собственного

Рис. 12-20. Тонкий квшечннх. Циркулярные складки, ворсинки и крипты определяют рельеф слизистой оболочки. Из густого подслизистого сплетения сосудов артериолы заходят в слизистую оболочку, распадаются на капилляры вокруг крипт и заходят в ворсинки. Разветвляясь на капилляры, 1-2 артериолы проходят от основания до вершины ворсинки. Кроме кровеносных сосудов, в сердцевине ворсинок присутствуют лимфатические калилляры и ГМК [из Junqueira LC, Cameiro J, 1991]

слоя слизистой оболочки, через стенку кровеносных капилляров в кровь, а через стенку лимфатических капилляров (тка́невые щели) - в лимфу.
(6) Межклеточные контакты (рис. 12-22). Поскольку всасывание аминокислот, сахаров, глицеридов и т.д. происходит через клетки, и внутренння среда организма далеко не безразлична к содержимому кишечника (напомним, что просвет кишечника - внешняя среда), возникает вопрос, каким образом предупреждается проникновение содержимого кишечника во внутреннюю среду по пространствам между клетками эпителия. *Закрытие реально существующих межклеточных пространств осуществляется за счёт специализированных межклеточных контактов, перекрывающих щели между эпителиальными клетками. Каждая клетка в пласте эпителия по всей окружности в апикальной области имеет сплошной пояс плотных контактов, предупреждающих поступление содержимого кишечника в межклеточные щели. Эпителиальные клетки формируют также адгезионные контакты - промежуточные и десмосомы.
(в) Всасывание
(i) Вода. Каёмчатые клетки крипт выделяют в просвет кишки Cl^{-}, что инициирует поток Na^{+}, других ионов и воды в том же направлении. Клетки ворсинок *накачивают* Na^{+}в межклеточное пространство и таким образом компенсируют перемещение Na^{+}и воды из внутренней среды в просвет кишечника. Микроорганизмы, приводящие к развитию диареи, вызывают потерю воды путём угнетения процесса поглощения Na^{+}клетками ворсинок и усиления гиперсекреции Cl^{-}клетками крипт.
(ii) Амннокнслоты. Всасывание аминокислот в кишечнике реализуется при помощи переносчиков, кодируемых генами SLC [глава 2 I B 16 (1) (6)].

Рис. 12-21. Ворсинка и крипта тонкого кищечника. Слизистая оболочка покрыта однослойным цилиндрическим эпителием. Каёмчатые клетки (эитероциты) участвуют в пристеночном пищеварении и всасывании. Панкреатические протеазы в просвете тонкого кишечника расщепляют поступающие из желудка полппептиды на короткие пептидные фрагменты и аминокислоты с последующим их транспортом внутрь энтероцитов. Расщепление коротких пептидных фрагментов до аминокислот происходит в энтероцитах. Энтероциты передают аминокислоты в собственный слой слизистой оболочки, откуда аминокислоты поступают в кровеносные капилляры. Связанные с гликокаликсом щеточной каёмки дисахаридазы расщепляют сахара до моносахаридов (главным образом, глюкозы, галактозы и фруктозы), которые всасываются энтероцитами с последующим выходом в собственный слой и поступлением в кровеносные капилляры. Продукты пищеварения (кроме триглицеридов) после всасывания через капиллярную сеть в слизистой оболочке направляются в воротную вену и далее в печень. Триглицериды в просвете пищеварительной трубки эмульгируются жёлчью и расщепляются панкреатическим ферментом липазой. Образовавшиеся свободные жирные кислоты и глицерин поглощают энтероциты, в гладкой эндоплазматической сети которых происходит ресинтез триглицеридов, а в комплексе Гольджи - формирование хиломикронов - комплекса триглицеридов и белков. Хиломикроны подвергаются экзоцитозу на боковой поверхности клетки, проходят через базальную мембрану и поступают в лимфатические капилляры. В результате сокращения ГМК, расположенных в соединительной ткани ворсинки, лимфа продвигается в лимфатическое сплетение подслизистой оболочки. Кроме энтероцитов, в каёмчатом эпителии присутствуют бокаловидные клетки, вырабатывающие слизь. Их количество нарастает от двенадцатиперстной к подвздошной кишке. В криптах, особенно в области их дна, расположены энтероэндокринные клетки, вырабатывающие гастрин, холецистокинин, желудочный ингибирующий пептид (GIP), мотилин и другие гормоны [из Hees H, Sinowatz F, 1992]

Рис. 12-22. Межклеточные контакты в эпителии слизнстой оболочки кишки. В апикальной части боковые поверхности клеток связаны плотными контактами. Ниже клетки соединены при помощи промежуточных контактов и десмосом [из Lentz T, 1971]
(iii) Сахара. Всасывание глюкозы и фруктозы обеспечивает белок-переносчик GLUT5 в щёточной каёмке энтероцитов тонкого кишечника. GLUT2 базолатеральной части энтероцитов реализует выход сахаров из клеток [глава 2 I В 16 (1) (a) (i)].
(iv) Жпры (см. подпись к рисунку 12-21).
(2) Бокаловидные клетки, секретирующие слизь, поодиночно рассыпаны среди каёмчатых клеток.
(3) Энтероэндокринные клетки самых различных типов расположены в криптах.
(4) Клетки Па́нета, содержащие в апикальной части гранулы с лизоцимом, лежат на дне крипт.
(5) Камбиальные клетки, из которых происходит постоянное образование новых клеток эпителия, расположены на дне крипт. Скорость обновления каёмчатых

клеток высока, время их жизни - около 3 суток. За это время они успевают образоваться из камбнальных клеток на дне крипт, переместиться из крипты к вершине ворсинки и погибнуть, слущившись в просвет кишечника. Таким образом, пласт эпителия постоянно *ползёт по направлению к верхушкам ворсинок, обеспечивая быструю физиологическую и репаративную регенерацию. Клетки в криптах, в особенности эндокринные, живут до́льше. Так, продолжительность жизни клеток, синтезирующих соматостатин, - до 60 суток.
(6) Слизисто-бикарбонатный барьер. Слизистая оболочка двенадцатиперстной кишки образует бикарбонат, участвующий в нейтрализации кислой реакции содержимого желудка и в инактивации пепсина. В этом отношенни наиболее активны слизистая оболочка проксимальной части двенадцатиперстной кишки и бру́ннеровы железы. Секреция бикарбоната усиливается при закислении содержимого в просвете кишки, а также под влиянием простагландина E_{2}.
6. Собственный слой образован волокнистой соединительной тканью с многочисленными лимфоцитами.
Лимфоидный аппарат. Лимфоциты рассеяны в собственном слое слизистой оболочки. В двенадцатиперстной и тощей кишке присутствуют солитарные (одиночные) лимфатические фолликулы. В подвздошной кишке фолликулы сливаются и образуют пе́йеровы бляшки (рис. 12-48), которые выходят за пределы слизистой оболочки и проникают в подслизистую оболочку.
Лимфатнческие фолликулы содержат M клетки, В-лимфоциты и плазматические клетки.
(i) \mathbf{M} клетки расположены по периферии лимфатического фолликула, это Ar представляющие клетки (глава 11 I B 4),
(ii) Плазматические клетки синтезируют и секретируют IgA, который транспортируется через эпителиальный пласт на его поверхность, где оседает в гликокаликсе, взаимодействуя с Аг в просвете кишки.

X ТОへСТЫЙ КИШЕЧНИК

A. Развитие. Толстый кишечник развивается из задней кишки и клоаки, которая к 6 -ой неделе плодного периода подразделяется на урогенитальный синус и прямую кишку.

Пороки развития

a. Атрезия анального отверстия развивается в результате нарушения разрыва клоачной мембраны.
6. Болезнь Хи́риспрунга возникает вследствие нарушения нормальной иннервации дистального отдела толстой кишки (дефект миграции предшественников нейробластов из нервного гребня).
Б. Стросние (рис. 12-46). Слизистая оболочка не имеет ворсинок. В криптах масса бокаловидных клеток. В толстом кишечнике множество лимфатических фолликулов. Червеобразный отросток почти всегда содержит многочисленные лимфатические фолликулы. Продольный слой мышечной оболочки не сплошной, а представлен тремя лентами.

1. Функции:

a. Всасывание электролитов и воды,
б. Образование каловых масс,
в. Секреция большого количества слизи, способствующей эвакуации каловых масс,
r. Синтез витаминов B_{12} и K кишечными бактериями.
2. Стимуляторы перистальтики кишечника:
a. Ацетилхолин,
б. Гастрин,
в. Холецистокинин,
г. Серотонин,
д. Гистамин,
e. Брадикинин.
3. Ингибиторы перистальтики кишечника:
a. Глюкагон,
б. Секретин,
в. Адреналин и норадреналин.

XI. ЖЕАЕЗЫ ПИЩЕВАРИТЕЛЬНОГО ТРАКТА

А. Большие слюнные железы (рис. 12-23, 12-50, 12-51). К ним относят три пары слюнных желёз: околоушные, подчелюстные и подъязычные. Это сложные трубчато-альвеолярные железы. В зависимости от характера секрета, различают белковые, слизистые и смешанные концевые отделы. Слюнные железы, содержащие в концевых отделах преимущественно белковые или слизистые клетки, относят соответственно к белковым или слизистым железам. Смешанные железы в концевых отделах содержат как белковые, так и слизистые клетки. Околоушная железа - чисто белковая, подъязычная железа - преимущественно слизистая и подчелюстная железа - смешанная. Секрет всех слюнных желёз образует слюну в количестве около 1 л в сутки. Слюна гипотонична по отношению к плазме. Она смачивает и очищает полость рта. Присутствующие в слюне лизоцим, лактоферрин и IgA контролируют бактериальную флору полости рта. Амилаза слюны расщепляет остатки крахмала вокруг зубов.

1. Секреторный отдел. В базальной части клеток секреторного отдела находятся ядро и гранулярная эндоплазматическая сеть, наиболее развитая в белковых клетках. Как в слизистых, так и в белковых клетках секреторные гранулы скапливаются в апикальной части. Секреторные гранулы белковых клеток содержат амилазу и гликопротеины. Секреторные гранулы слизистых клеток крупнее, чем в белковых, содержат муцин и гликопротеины. Периферическую часть секреторных отделов занимают миоэпителиальные клетки.
2. Выводной проток. От концевых отделов начинается разветвлённая система выводных протоков: вставочный отдел, исчерченный проток (слюнная трубка), внутридольковый и междольковый протоки.
a. Вставочный отдел выстлан плоским или кубическим эпителием.
3. Исчерченный проток представлен цилиндрическими эпителиальными клетками (рис. 12-24), образующими в базальной части многочисленные инвагинации, значительно увеличивающие площадь клеточной мембраны для транспорта ионов. Здесь расположены многочисленные митохондрии удлинённой формы, ориентированные параллельно апикально-базальной оси клетки. Эпителиальные клетки исчерченного протока переводят изотонический секрет, образующийся в концевых отделах, в гипотонический окончательный секрет, входящий в состав слюны (рис. 12-25).
4. Нервный контроль секреции. Парасимпатические холинергические волокна заканчиваются на клетках секреторного отдела и выводных протоков и значительно усиливают секреторную активность железы.
Б. Поджелудочная железа состоит из экзокринной и эндокринной частей. Эндокринная часть (островки Ла́нгерханса) рассмотрена в IV 1. Экзокринная часть участвует в переваривании белков, липидов и углеводов. Секретируемый железой бикарбонат вместе с бикарбонатом двенадцатиперстной кишки и гепато-билиарной системы участвует в нейтрализации соляной кислоты, поступающей из желудка в двенадцатиперстную кишку.
5. Структура экзокринной части (рис. 12-26, 12-27 и 12-52). В железе различают дольки, состоящие из ацинусов и начальных отделов выводных протоков. Взаимоотношения между ними представлены на рис. 12-26 и 12-27. Протоки выводят секреторные продукты ацинуса и выделяют бикарбонат. В центре ацинусов расположены т.н. центроацинозные клетки (рис. 12-27). От них начинаются выводные протоки. Кубический или цилиндрический эпителий внутридольковых выводных протоков переходит в цилиндрический эпителий междольковых протоков. Среди эпителиальных клеток присутствуют энтероэндокринные клетки.
Ацинозные клетки синтезируют, хранят и секретируют пищеварительные ферменты.
(1) Структура (рис. 12-28). Секреторные клетки характеризуются выраженной полярной дифференцировкой. Апикальная их часть содержит многочисленные зимогенные гранулы с пищеварительными ферментами. Ядро смещено в базальную часть, где присутствуют хорошо развитая гранулярная эндоплазматическая сеть,

Рис. 12-23. Подчелюстная слювная железа содержит белковые и белково-слизистые (смешанные) секреторные отделы. Секреторные отделы переходят во вставочный отдел. По мере продвижения секрета по выводным протокам увеличивается количество слоёв клеток в эпителии [из Braus из Bloom W, Fawcett DW, 1968]

Рис. 12-24. Эпителиальная клетка исчерченного протока большой слювной железы. В базальной части клетки содержатся митохондрии, имеются многочисленные инвагинации плазматической мембраны. Крупное округлое ядро занимает центральную область клетки. Апикальная часть заполнена везикулами. Комплекс Гольджи расположен над ядром [из Lentz TL, 1971]

Рас. 12-25. Транспорт ионов и глюкозы в околоупной слюнной хелезе. Секреторные отделы содержат изотонический по сравнению с плазмой секрет. Эпителиальные клетки протоков активно выкачивают Na^{+}и Cl^{-}из жидкости в просвете протока и секретируют в неё K^{+}и глюкозу. В результате образуется гипотонический (по сравнению с плазмой) окончательный секрет [из Davenpon HW, 1977]

Рис. 12-26. Организация ацинусов и внутридольковых протоков в подщелудочной шелезе. Состоящие из секреторных клеток ацинусы переходят в короткие вставочные протоки, начинающиеся от центроацинозных клеток. Далее секрет поступает во внутридольковые, а затем в междольковые протоки. На рисунке показаны различные варианты взаимоотношений между ацинусами и внутридольковыми протоками [из Akao et al, 1977]

Рис. 12-27. Ацинус поджелудочной железы. Главный клеточный тип - ацинозные клетки, вырабатывающие пищеварительные ферменты. Видны центроацинозные клетки, относящиеся к внутриацинозной части вставочных протоков [из Junqueira LC, Cameir J, 1991]

Базальная часть клетки (гомогенная зона)

свободные рибосомы и митохондрии. Область между зимогенными гранулами и ядром эанимает комплекс Гольджи. В цитоплазме апикальной части найдены актиновые микрофиламенты, образующие сеть, и микротрубочки, участвующие во внутриклеточном транспорте зимогенных гранул и освобождении их содержимого во внеклеточное пространство.
(2) Межклеточные контакты. Мембраны соседних ацинозных клеток в апикальной части соединены при помощи плотных контактов, промежуточных контактов и десмосом. Все вместе эти контакты образуют соединительный комплекс, служащнй барьером для крупных молекул, но проницаемым для воды и ионов. Кроме того, ацинозные клетки связаны при помощи щелевых контактов, обеспечивающнх электрическое сопряжение и передачу ионов и низкомолекулярных веществ от клетки к клетке.
(3) Регуляция. Ацетилхолин (через м-холинорецепторы) и нейропептиды усиливают секреторную активность ацинозных клеток (рис. 12-29). Симпатические нервные волокна через адренорецепторный вход тормозят секреторную функцию ацинозных клеток.
2. Функция. В поджелудочной железе вырабатываются панкреатический сок и ферменты.
a. Панкреатическнй сок ($1,5-2$ л в сутки) изотоничен плазме крови, имеет $\mathrm{pH}-8-8,5$ из-за высокого содержания бикарбоната, который нейтрализует кислую реакцию химуса (пищевые массы, смешанные с желудочным соком).
б. Ферменты поджелудочной железы играют ключевую роль в переваривании белков, жиров и углеводов. Оптимум действия ферментов поджелудочной железы приходится на рН - 7-8. Ферменты вырабатываются в виде предшественников, которые активируются в просвете кишки.
(1) Протеазы - ферменты, расщепляющие белки (трипсин, химотрипсин, карбоксипептидазы А и В, эластаза). Трипсиноген (предшественник трипсина) активируется энтерокиназой, вырабатываемой в двенадцатиперстной кишке. Трипсин катализирует собственную активацию, активацию химотрнпснногена (предшественник химотоипсина) и поокадбоксипептидаз.

Рис. 12-29. Рецепторные входы и внутриклеточные механизмы усилевия секреторной активности ацинозных клеток поджелудочной железы. AX - ацетилхолин, P - вещество P [из Pandol SJ, Isenberg JI, 1990]
(2) Ферменты, расщепляющие жиры. Панкреатическая липаза, фосфолипазы A1, A2, лецитиназа.
(3) α-Амилаза - панкреатический фермент, расщепляющий углеводы.
(4) Нуклеазы - ферменты, расщепляющие нуклеиновые кислоты (ДНКаза, РНКаза).
В. Печень (рис. 12-30, 12-53). Разобраться в структуре печени несложно, если принять во внимание следующие обстоятельства.
Кровь в орган поступает по двум сосудам - артериальная по a. hepatica ($20-30 \%$ получаемой печенью крови) и венозная по v. porta ($70-80 \%$ получаемой печенью крови), а оттекает по одному (v. hepatica).
Гепатоциты омываются смешанной кровью, находящейся в синусоидах.
Гепатоциты можно рассматривать как клетки с внешней секрецией и одновременно как клетки с внутренней секрецией. При этом не имеется в виду, что гепатоциты эндокринные клетки, хотя они секретируют в кровь разные биологически активные вещества; имеется в виду, что гепатоциты, как и эндокринные клетки, характеризуются интимными отношениями с кровеносным руслом: для гепатоцитов характерен мощный обмен разными веществами с кровью - как секреция в кровь, так и поглощение из крови.

1. Морфофункциональные единицы печени - классическая и портальная дольки, а также ацинус.
а. Классическаฐ долька (рис. 12-31). Эта морфофункциональная единица имеет гексагональную форму. В центре расположена центральная вена, к которой сходятся печёночные тяжи, состоящие из гепатоцитов. Между тяжами залегают синусоиды. В области стыков нескольких классических долек расположена портальная зона.
(1) Портальная зона ($т . н . ~ т р и а д а) . ~ М е ж д о л ь к о в ы е ~ с о с у д ы: ~ м е ж д о л ь к о в ы е ~ а р т е-~$ рия, вена, жёлчный проток и лимфатический междольковый сосуд; кровь в синусоиды поступает из междольковых артерии и вены (бассейн воро́тной вены), а собирается в один коллектор (бассейн нижней полой вены, начинающийся от центральной вены).
(2) Синусоиды печени - анастомозирующие пустоты между анастомозирующими тяжами гепатоцитов. В синусоидах печени находится смешанная кровь.
(a) Кровоток. Кровь в классическую дольку поступает из междольковой артерии (обогащённая O_{2}) и междольковой вены (богатая питательными веществами) соответственно по терминальным печёночным артериолам и терминальным воротным венулам. Эти сосуды открываются в синусоиды, по которым смешанная кровь направляется к центральной (терминальной печёночной) вене и далее по печёночным венам попадает в нижнюю полую вену.
(6) Пространство Ди́ссе - пространство между гепатоцитами и эндотелиальными клетками синусоидов. В пространство обращены микроворсинки гепатоцитов. Здесь расположены ретикулиновые волокна, поддерживающие структуру синусоидов; встречаются жиронакапливающие клетки.
2. Портальная долька - структура треугольной формы. Портальная зона образует её центр, а центральные вены трёх смежных классических долек - вершины.
3. Ацинус - структурно-метаболическая единица печени, имеющая форму ромба, вершины которого образованы центральными венами соседних гексагональных печёночных долек и смежными портальными зонами. Часть ацинуса, расположенная вблизи сосудов, кровоснабжается лучше других его отделов (зона 1 на рис. 12-31). Наружная же часть ацинуса, локализованная вблизи центральных вен (зона 3 на рис. 12-31), получает менее оксигенированную кровь. Поэтому структуры этой зоны ацинуса более уязвимы при интоксикациях и дефиците питательных веществ.

Рис. 12-30. Строение печеви. На переднем плане схемы представлены компоненты портальной зоны: междольковые артерия, вена и жёлчный проток. Кровь из сосудов портальной зоны постулает в синусоиды, радиально сходящиеся к центральной вене. Паренхиму печени образуют тяжи гепатоцитов. Они формируют жёлчные капилляры, из которых жёлчь поступает в междольковые жёлчные протоки. Синусоиды выстланы эндотелиальными клетками, между которыми встречаются клетки фон Kупффера [чз Junqueira LC, Carneim J, 1991]
2. Желчевыводящие пути. Жёлчные капилляры (гепатоциты) \rightarrow холангиолы \rightarrow мелкие жёлчные протоки \rightarrow междольковые жёлчные протоки (кубический эпителий) \rightarrow крупные септальные и трабекулярные протоки (цилиндрический эпителий) \rightarrow внутрипечёночные протоки \rightarrow правый и левый печёночные протоки \rightarrow общий печёночный проток \rightarrow общий жёлчный проток \rightarrow двенадцатиперстная кишка.
a. Жёлчные капилляры находятся внутри тяжей гепатоцитов, это тонкие каналы между соседними гепатоцитами. Жёлчные капилляры не имеют собственной стенки, т.к. эти капилляры являются частью межклеточного пространства между соседними гепатоцитами, *запертого специализированными контактами для предупреждения

Рис. 12-31. Ацинусы печени. Выделено два соседних ацинуса. В одном показаны зоны, а в другом - печёночные пластинки. 1, 2,3 - зоны ацинуса, различающиеся по интенсивности кровоснабжения и чувствительности к действию токсинов или к недостатку питательных веществ. В зоне 1 (центральная часть ацинуса) проходят терминальная ветвь воротной венулы, печёночная артериола и жёлчный проток. Клетки зоны 3 лежат ближе к центральной вене [из $\operatorname{Ham} A$, 1974]

просачивания жёлчи в кровь, находящуюся в синусоидах. Жёлчные капилляры слепо начинаются в центральной части классической дольки и идут на её периферию, где впадают в холангиолы.
6. Холангиолы - короткие трубочки на периферии классических долек. Принимают жёлчь из жёлчных капилляров и передают её междольковым жёлчным протоқам. Холангиола образована 2-3 холангиоцитами.

3. Основные клеточные типы

a. Гепатоциты (рис. 12-32) образуют печёночные пластинки (тяжи). Содержат в изобилии практически все органеллы. Ядро имеет 1-2 ядрышка и, как правило, расположено в центре клетки. 25% гепатоцитов имеет 2 ядра. Для клеток характерна полиплоидия: $55-80 \%$ гепатоцитов - тетраплоидны, $5-6 \%$ - октаплоидны и только 10% - диплоидны. Хорошо развита гранулярная и гладкая эндоплазматическая сеть. Элементы комплекса Гальдзаи присутствуют в различных отделах клетки. Количество митохондрий в клетке может достигать 2000 . Клетки содержат лизосомы и пероксисомы. Последние имеют вид окружённого мембраной пузырька диаметром до 0,5 мкм. Пероксисомы содержат окислительнье ферменты - аминооксидазу, уратоксидазу, каталазу. Как и в митохондриях, в пероксисомах происходит утилизация кислорода. Прямое отношение к образованию этих органелл имеет гладкая эндоплазматическая сеть. Гепатоциты активно накапливают гликоген. В цитоплазме присутствуют многочисленные включения. Маркёры: альбумин, глюкозо-6-фосфатаза, цитокератины 8 и 18, цитохром P-450, аспартат аминотрансфераза, аланин аминотрансфераза.
6. Эпителий щёлчных протоков (холангиоциты). Маркёры: цитокератины 7 и 19.
в. Эндотелнальные клетки (рис. 12-32) синусоидов имеют удлинённую форму. Перинуклеарная область клетки выступіает в просвет сосуда. Эндотелиальные клетки контактируют при помощи многочисленных отростков. Между эндотелиальными клетками и гепатоцитами имеется пространство Диссе. В его пределах микроворсинки гепатоцитов соприкасаются с поверхностью эндотелиальных клеток. Ядро расположено вдоль клеточной мембраны со стороны пространства Диссе. В клетке содержатся элементы гранулярной и гладкой эндоплазматической сети. Комплекс Гольджи обычно расположен между ядром и просветом синусоида. В цитоплазме эндотелиальных

Рис. 12-32. Основные клеточные типы печени. Гепатоциты образуют анастомозирующие тяжи. Соприкасающиеся поверхности гепатоцитов формируют жёлчный капилляр. Другой своей поверхностью гепатоциты обращены к синусонду. Стенка синусоида образована экдотелиальными клетками, между которыми присутствуют клетки фон Купффера. Гепатоциты и эндотелиальные клетки ограничивают пространство Диссе [из Kopf-Maier P, Merker H-J, 1989]

клеток содержатся многочисленные пиноцитозные пузырьки и лизосомы. Клетки фон Купффера не вступают в контакт с перинуклеарной цитоплазмой эндотелиальных клеток, но располагаются между ними в составе стенки синусоида. Способность эндотелиальных клеток к эндоцитозу значительно менее выражена, чем у клеток фон Купффера. Маркёр эндотелиальных клеток - фактор VIII (фактор фон Вилкебранда).
г. Клетки Купффера относятся к системе мононуклеарных фагоцитов. В их цитоплазме содержатся лизосомы, включения железа и пигменты. Характеризуются высокой активностью пероксидазы. Очищают кровь от попавшего в неё чужеродного материала, фибрина, избытка активированных факторов свёртывания крови. Участвуют в фагоцитозе эритроцитов, обмене Hb и жёлчных пигментов. Клетки захватывают железо из крови и аккумулируют его для последующего использования в синтезе Hb . Вместе с гепатоцитами участвуют в инактивации кортикостероидов.
д. Хиронакапливающие клетки (липоциты, клетки Ито) расположены в перисинусоидальном пространстве. Для этих клеток in vitro показана способность синтезировать коллаген, в связи с чем предполагают их участие в развитии цирроза и фиброза печени.
4. Функции печени многочисленны.
a. Секреция жёлчи.
б. Синтез белков плазмы (папример, альбумины, фибриноген, протромбин, фактор III, липопротеины).
в. Запасание метаболитов (например, гликоген и триглицериды).
г. Глюконеогенез. Превращение аминокислот и липидов в глюкозу.
д. Детоксикация. Инактивация различных лекарственных препаратов и токсических веществ при помощи различных ферментов в ходе реакций окисления, метилирования и связывания.
c. Защита организма
(1) Фагоцитоз
(2) Транспорт IgA из пространств Ди́ссе в жёлчь и далее - в просвет кишки

ж. Кроветворная

(1) Участие в эмбриональном гемопоэзе [глава 6.1 IV A 2 a]
(2) Синтез тромбопоэтина
Г. Жёлчный пузырь - растяжимый полый орган грушевидной формы, расположенный под правой долей печени и содержащий $30-50$ мл жёлчи. Назначение органа состоит не только в хранении, но и в концентрировании жёлчи за счёт активного транспорта Na^{+}и Cl^{-} эпителиальными клетками слизистой оболочки.

1. Эпителиальные клетии имеют цилиндрическую форму, на апикальной поверхности несут различной величины микроворсинки, покрытые гликопротеиновой оболочкой. Боковая поверхность клеток образует выросты. Среди эпителиальных клеток шейки жёлчного пузыря присутствуют клетки, секретирующие слизь и гормоны.
2. Мышечная оболочка представлена гладкомышечными клетками. Холецистокинин, вырабатываемый энтероэндокринными клетками слизистой оболочки тонкой кишки, стимулирует сокращение ГМК и эвакуацию жёлчи. При пустом жёлчном пузыре сокращение мышечной оболочки приводит к образованию складок слизистой.
3. Наружная оболочка жёлчного пузыря - серозная. Она покрывает весь орган, за исключением места его прилегания к печени.

ПРЕПАРАТЫ

A. Зубы

1. Зачаток молочного зуба (2-месячный плод). На этом сроке зачаток зуба представлен только что сформированной зубной пластинкой - эпителиальный вырост в подлежащую мезенхиму. Конец зубной пластинки расширен. Из него в дальнейшем разовьётся эмалевый орган (рис. 12-9).
2. Зачаток молочного зуба (3-месячный плод). На препарате хорошо виден эмалевый орган, связанный с зубной пластинкой при помощи тонкого эпителиального тяжа шейки эмалевого органа. Вокруг эмалевого органа сформирован зубной мешочек, сливающийся у основания зубного зачатка с мезенхимой зубного сосочка (рнс. 12-33). В эмалевом органе видны внутренние эмалевые клетки цилиндрической формы (амелобласты, участвующие в образовании эмали). По краю эмалевого органа внутренние эмалевые клетки переходят в наружные, лежащие на поверхности эмалевого органа и имеющие уплощённую форму. Клетки центральной части эмалевого органа приобретают звёздчатую форму. Эта часть эмалевого органа носит название пульпы. Часть клеток пульпы, прилегающая непосредственно к слою энамелобластов, образует промежуточный слой эмалевого органа, состоящий из 2-3 рядов кубических клеток. Зубной сосочек увеличивается в размерах и ещё глубже врастает в эмалевый орган. В него проникают кровенос-

ные сосуды. На поверхности зубного сосочка из мезенхимных клеток дифференцируются одонтобласты - клетки с тёмной базофильной цитоплазмой, расположенные в несколько рядов. Этот слой отделён от амелобластов при помощи тонкой базальной мембраны. В окружности зубного зачатка формируются перекладины костной ткани зубных альвеол. Иногда на препарате в срез попадает зачаток постоянного зуба, лежащий ниже закладки молочного зуба с язычной стороны.
3. Зачаток молочного зуба (5 -месячный плод). Ядра амелобластов перемещаются в сторону, противоположную первоначальному их положению. Теперь ядро располагается в бывшей апикальной части клетки, граничащей с пульпой эмалевого органа. В зубном сосочке виден периферический слой правильно расположенных одонтобластов грушевидной формы, длинный отросток которых обращён к эмалевому органу. Эти клетки образуют узкую полоску неминерализованного предентина, снаружи от него располагается некоторое количество зрелого минерализованного дентина. На стороне, обращённой к слою дентина, видна тонкая полоска органического матрикса эмалевых призм.

Рнс. 12-33. Закладка молочного зуба. Зачаток зуба связан с эпителием ротовой полости зубной пластинкой. Эмалевый орган образуют наружный и внутренний эмалевые эпителии, разделённые рыхлой массой клеток - эмалевой пульпой. Клетки внутреннего эмалевого эпителия дифференцируются в энамелобласты, образующие эмаль. Зубной сосочек расположен внутри бокаловидной формы эмалевого органа в виде скопления мезенхимных клеток. Периферические клетки зубного сосочка дифференцируются в одонтобласты и образуют дентин [из Voss H, 1957]
4. Декальцинированный зуб. В связи с особенностью обработки препарата (декальцинация, т.е. удаление минеральных веществ) в нём невозможно обнаружить эмаль. Дентин - один из видов костной ткани. В дентине имеются тонкие канальцы, направляющиеся от пульпарной полости к поверхности зуба. В этих канальцах в живом зубе находятся отростки одонтобластов. Их тела расположены в пульпе на границе с дентином. Цемент похрывает дентин корня тонким слоем, утолщающимся к вершине корня. Цемент, расположенный ближе к шейке зуба, не содержит клеток и называется бесклеточным. Верхушку корня одевает цемент, содержащий клетки (клеточный цемент). В центральной части зуба, в пульпарной полости, находится мякоть зуба - пульпа. Пульпарная полость на вершине корня открывается одним или несколькими зубными отверстиями. Если срез прошёл не через середину зуба, то на препарате зубное отверстие не просматривается, а пульпарная полость невелика или отсутствует совсем. Пульпа представлена рыхлой волокнистой соединительной тканью. В периферическом её слое находятся одонтобласты. В промежуточном слое пульпы имеются коллагеновые волокна и мелкие малодифференцированные клетки. Центральный слой содержит клетки соединительной ткани, волокна и кровеносные сосуды.
Б. Губа (рис. 12-34). В губе кожный покров лица переходит в слизистую оболочку ротовой полости. Центральную часть губы занимает поперечнополосатая кольцевая мышца рта. Кожная часть (pars cutanea) имеет строение кожи с малым ороговением. В ней присутствуют корни волос, сальные и потовые железы. Переходная часть губы - продолжение кожной части. В переходной части губы две зоны: наружная гладкая (pars glabra) и внутренняя ворсинчатая (pars villosa). В наружной части эпителий ещё сохраняет роговой слой, но становится тоньше и прозрачнее. В собственно коже отсутствуют корни

Переходная часть

волос и потовые железы, но ещё имеются сальные железы, открывающиеся протоками на поверхность эпителия. Во внутренней (ворсинчатой) зоне эпителий становится толще, роговой слой полностью исчезает. В эпителий вдаются высокие соединительнотканные сосочки с большим количеством капилляров - выросты собственного слоя слизистой оболочки (t. mucosa propria). У новорождённых эта часть губы покрыта эпителиальными выростами - ворсинками. Эти ворсинки очень быстро сглаживаются. На задней (внутренней) поверхности губы переходная часть граничит с pars тисоsa (слизнстая часть). Здесь расположена слизистая оболочка кожного типа. Она состоит из многослойного плоского неороговевающего эпителия и находящегося под ним собственного слоя слизистой оболочки. Под слизистой оболочкой располагается подслизистая оболочка (t. submucosa), где присутствуют крупные секреторные отделы сложных альвеолярно-трубчатых желёз (губные железы - glandulae labiales).

В. Язык

1. Нитевидные сосочки (рис. 12-35). Основу языка составляют пучки поперечнополосатых мышечных волокон. Мышечное тело языка покрыто слизистой оболочкой, состоящей из многослойного плоского (местами ороговевающего) эпителия и подстилающего его собственного слоя слизистой оболочки, состоящего из рыхлой волокнистой неоформленной соединительной ткани. Наиболее мелкие среди сосочков - нитевидные, они образованы возвышением собственного слоя слизистой оболочки. С поверхности сосочек покрыт эпителием, причём на вершине сосочка поверхностные слои эпителия подвергаются ороговению.

Рис. 12-35. Нитевидные сосочки выступают на поверхности эпителия слизистой оболочки языка в виде тонких остроконечных возвышений, состоящих из ороговевающих кератиноцитов. В основе сосочка лежит соединительнотканный вырост собственного слоя слизистой оболочки [из: Кульчиикий $H K$, 1912]
2. Листовидные сосочки (рис. 12-36). Листовидный сосочек образован выпячиванием собственного слоя слизистой оболочки с 5-12 вторичными выпячиваниями, разделёнными узкими углублениями эпителия. Собственный слой слизистой оболочки покрыт многослойным плоским эпителием. В толще эпителия залегают вкусовые почки (глава 8.4 III, рис. 12-37). Углубления в листовидных сосочках хорошо промываются секретом желёз, расположенных глубоко в соединительной ткани собственного слоя на границе с мышцей языка.

Рис. 12-36. Листовидвые сосочки языка. Сосочки покрыты многослойным плоским неороговевающим эпителием, в котором на боковой поверхности сосочков присутствуют вкусовые почки. В углубления между сосочками открываются выводные протоки слюнных желёз

Рес. 12-37. Вкусовые почки - округлые светлые структуры, образованные вытянутыми клетками. В апикальной части вкусовой луковицы на поверхности эпителиального пласта видна вкусовая пора. Вкусовые клетки образуют синапсы с чувствительными нервными волокнами, входящими во вкусовую почку из соединительной ткани сосочка [из Kölliker A, 1899]
3. Грибовидные сосочки (рис. 12-38) шире у вершины и сужены у основания. Сосочки покрыты многослойным плоским эпителием без признаков ороговения. На уплощённой вершине сосочка и реже на боковой поверхности встречаются единичные вкусовые почки. Соединительная ткань образует многочисленные выросты, вдающиеся в эпителий.
4. Желобоватые сосочки (рис. 12-39) в количестве 6-12 расположены в задней части языка, кпереди от пограничной борозды между телом и корнем языка. Сосочки возвышаются над поверхностью языка и окружены глубоким желобком. Многослойный плоский эпителий покрывает соединительнотканную основу сосочка. Соединительная ткань имеет множество коротких выростов в верхней части сосочка - вторичные соединительнотканные сосочки. В эпителии на боковой поверхности сосочка и окружающего его валика присутствуют многочисленные вкусовые почки. На дне желобка открываются выводные протоки трубчатых белковых и слизистых желёз. В соединительнотканной основе сосочка проходят мелкие кровеносные сосуды и нервные волокна,
Г. Пищевод. В стенке пищевода различают следующие оболочки: слизистая, подслизистая, мышечная и наружная. В пищеводе слизистая оболочка (t. тисоsa) кожного типа. Эпителий многослойный плоский неороговевающий, лежит на тонкофибриллярной соединительной ткани - собственный слой слизистой оболочки (lamina mucosa propria), состоящий из тонких пучков коллагеновых волокон; содержит также ретикулиновые волокна, соединительнотканные клетки. Собственный слой слизистой оболочки вдаётся в эпителий в виде сосочков. В собственном слое могут присутствовать лимфоидные скопления, имеющие

Рис. 12-38. Грибовидный сосочек

разлитой характер или вид т.н. солитарных (одиночных) лимфатических фолликулов. В собственном слое слизистой оболочки пищевода находятся секреторные отделы простых трубчатых разветвлённых желёз, сходных с кардиальными железами желудка. Они расположены двумя группами: верхняя - на уровне перстневидного хряща и пятого кольца трахеи, а нижняя группа - при переходе пищевода в желудок. Снаружи от собственного слоя хорошо заметен идущий продольно слой ГМК - мышечный слой слизистой оболочки (lamina muscularis mисоsae). Подслизистая оболочка (t. submисоsa) развита хорошо и представлена рыхлой волокнистой соединительной тканью. В толще t. submucosa расположены секреторные отделы сложных разветвлённых слизистых желёз, их выводные протоки открываются на поверхность эпителия. Мышечная оболочка (t. muscularis externa) состоит из двух слоёв: внутреннего кольцевого и наружного продольного. В верхней трети пищевода мышечная оболочка представлена поперечнополосатой мышечной тканью, которая постепенно замещается гладкомышечной. Наружная оболочка (t. adventitia) образована соединительной тканью, с помощью которой пищевод соединяется с другими органами средостения. В нижней части пищевода, лежащей сразу под диафрагмой, t. adventitia заменяется серозной оболочкой.

Рис. 12-39. Желобоватый сосочек

Переход пищевода в желудок (рис. 12-40). Переход слизистой оболочки пищевода в желудок совершается сразу. В месте перехода многослойный плоский эпителий пищевода заменяется на однослойный цилиндрический железистый эпителий желудка. Стенка желудка состоит из тех же четырёх оболочек, что и стенка пищевода, т.е. t. тисоsа, t. submucosa, t. muscularis externa и t. serosa. В слизистой оболочке расположены кардиальные железы - простые трубчатые железы с разветвлёнными секреторными отделами.
Д. Желудок. Поверхность слизистой оболочки желудка неровная, имеет углубления - желудочные ямки. Желудочные ямки и вся поверхность слизистой оболочки желудка выстлана однослойным однорядным цилиндрическим железистым эпителием. Эпителий лежит на волокнистой соединительной ткани - lamina mucosa propria. В ней расположены кардиальные железы - простые трубчатые железы с разветвлёнными секреторными отделами. Выводные протоки этих желёз открываются на дне желудочных ямок. За l. propria находится хорошо развитая в стенке желудка l. muscularis mucosae. Подслизистая оболочка (t submucosa) образована рыхлой соединительной тканью, содержит много эластических волокон и кровеносных сосудов; железы в ней отсутствуют. Мышечная оболочка (t. muscularis)

Рис. 12-40. Переход пищевода в желудок. Слизистая оболочка кардиальной части желудка имеет неглубокие желудочные ямки и кардиальные железы в собственном слое. Многослойный плоский эпителий пищевода переходит в однослойный цилиндрический железистый эпителий желудка

состоит из трёх нерезко разграниченных слоёв гладких мышц: наружного продольного, среднего циркулярного и внутреннего, имеющего косое направление. Серозная оболочка (t. serosa) состоит из соединительнотканной основы, покрытой мезотелием.

1. Дно щелудка (рис. 12-41). В области дна желудка вся толща собственного слоя слизистой оболочки занята фундальными железами, плотно прилежащими друг к другу. Местами между железами видны прослойки рыхлой волокнистой неоформленной соединительной ткани. Мышечный слой слизистой оболочки состоит из трёх слоёв ГМК. Подслизистая оболочка образована рыхлой волокнистой неоформленной соединительной тканью. Мышечная оболочка: три слоя ГМК.
2. Фундальная железа (рис. 12-42) относится к простым трубчатым неразветвлённым или сла6о разветвлённым железам. В них различают шейку, открывающуюся на дне желудочной ямки, тело и дно. Секреторный отдел имеет очень узкий просвет и состоит из главных, париетальных, энтероэндокринных и слизистых шеечных клеток. Главные клетки образуют дно железы. Здесь, наряду с главными клетками, присутствуют редкие париетальные и энтероэндокринные клетки. Основная масса париетальных клеток сосредоточена в теле и шейке железы. Слизистые шеечные клетки расположены в шейке железы (отсюда происходит их название) и вырабатывают слизистый секрет, по химическому составу отличающийся от более вязкой слизи поверхностных слизистых клеток желудка. Между железами видны тонкие прослойки соединительной ткани с кровеносными сосудами.

Рис. 12-41. Дно мелудка

Рис. 12-42. Фундальная хелеза [из Bloom W, Fawsett DW, 1962]

3. Пилорическая часть (рис. 12-43) желудка построена из четырёх оболочек: слизистой, подслизистой, мышечной н серозной. В отличие от фундальной части желудка, желудочные ямки значительно глубже; в толще собственного слоя слизистой оболочки расположены пилорические железы. Для выделяющих слизь и некоторое количество пепсиногена пилорических желёз характерны разветвлённые секреторные отделы и практически полное отсутствие париетальных клеток. Пилорические железы содержат клетки, сходные с шеечными слизистыми клетками фундальных желёз. В мышечной оболочке особого развития достигает средний (циркулярный) слой ГМК, образующий пилорический сфинктер и регулирующий поступление пищи из желудка в двенадцатиперстную кишку.
4. Переход желудка в двенадцатиперстную кишку (рис. 12-44). Стенка желудка, как и стенка двенадцатиперстной кишки, состоит из четырёх оболочек: слизистой, подслизистой, мышечной и серозной. В области перехода наиболее существенные изменения происходят в слизистой и подслизистой оболочках. Однослойный цилиндрический железистый эпителий желудка сменяется однослойным цилиндрическим каёмчатым эпителием (с бокаловидными клетками) двенадцатиперстной кишки, покрывающим широкие выросты слизистой оболочки (ворсинки), а также щелевидные углубления между основаниями ворсинок (крипты). Пилорические железы, секреторные отделы которых находятся в собственном слое слизистой оболочки желудка, постепенно исчезают. В подслизистой оболочке двенадцатиперстной кишки расположены секреторные отделы сложных разветвлённых желёз (бруннеровы железы). В области перехода в собственном слое слизистой оболочки можно увидеть скопление лимфоидной ткани в виде солитарного фолликула.

Рис. 12-43. Пилорическая часть хелудка

Рис. 12-44. Переход мелудка в двёвадцатиперстную кишку

Е. Кишечник

1. Двенадцатиперстная кишка. В стенке двенадцатиперстной кишки различают оболочки: слизистую, подслизистую, мышечную, серозную. Слизистая оболочка образует многочисленные ворсинки - конические выросты с широким основанием. Между ворсинками, распространяясь вплоть до мышечного слоя слизистой оболочки, находятся трубкообразные углубления - крипты. И ворсинки, и крипты выстланы однослойным цилиндрическим каёмчатым с бокаловидными клетками эпителием. Собственный слой слизистой оболочки построен из рыхлой волокнистой неоформленной соединительной ткани с большим количеством коллагеновых и ретикулиновых волокон. Мышечный слой слизистой оболочки на всём протяжении кишечной трубки состоит из двух слоёв гладких мышц: внутреннего циркулярного и наружного продольного. В подслизистой оболочке расположены секреторные отделы сложных разветвлённых слизнстых желёз (бруннеровы железы). Мышечная оболочка построена из двух слоёв: внутреннего циркулярного и наружного продольного.
2. Тощая кишка (рис. 12-45). Стенка тощей кишки построена так же, как и стенка двенадцатиперстной кишки, но с некоторыми отличиями. Ворсинки в тощей кишке значительно выше и тоньше, имеют цилиндрическую форму. В подслизистой оболочке отсутствуют железы.
3. Толстая кишка (рис. 12-46). В стенке толстой кишки различают четыре оболочки: слизистую, подслизистую, мышечную и серозную. В отличие от тонкого кишечника, отсутствуют циркулярные складки и ворсинки. Крипты развиты значительно сильнее, их больше, расположены они очень часто, между ними остаются небольшие промежутки собственного слоя слизистой, заполненные рыхлой волокнистой неоформленной соединительной тканью. Поверхность слизистой, обращённая в просвет, и стенки крипт выстланы однослойным цилиндрическим каёмчатым эпителием с огромным количеством

бокаловидных клеток. В собственном слое слизистой видны солитарные лимфатические фолликулы.

Ж. Лимфоидный аппарат пищеварительного тракта

1. Нёбная миндалина (рис. 12-47). Миндалины - скопления лимфоидной ткани. В области миндалин слизистая оболочка образует глубокие и ветвящиеся впячивания, или крипты, выстланные многослойным плоским эпителием. В собственном слое слизистой оболочки расположено скопление лимфоидной ткани в виде лимфатических фолликулов. В них видны центры размножения. Эпителий (особенно на дне крипт) инфильтрирован лимфоцитами. Основание миндалины отделено от окружающей ткани соединительнотканной капсулой.
2. Подвздошная кишка (рис. 12-48) построена так же, как и тощая кишка. Её особенность - в каудальном отделе имеется большое количество лимфатических фолликулов, образующих агрегаты, известные как пейерова бляшка. Лимфатические фолликулы пейеровой бляшки занимают всю толщину собственного слоя слизистой, а также (и очень часто) и подслизистую оболочку.

Рнс. 12-45. Тощая кишка

Рис. 12-46. Толстая кишка. Однослойный цилиндрический эпителий крипт содержит каёмчатые клетки, многочисленные бокаловидныт клетки и некоторое количество энтероэндокринных клеток. Собственный слой между криптами содержит многочисленные кровеносные и лимфатические сосуды, в которые путём пассивного транспорта поступает вода. Сокращения ГМК мышечного слоя слизистой оболочки способствуют выведению слизи из крипт и препятствуют их засорению. Лимфоциты образуют скопления в слизистой и подслизистой оболочках [из Stöhr P et al, 1955]

Рис. 12-47. Нёбная миндалина. В толщу миндалины на большую глубину проникают слепо заканчивающиеся крипты, покрытые многослойным эпителием. В непосредственном контакте с эпителием находятся многочисленные лимфатические фолликулы [из Junqueira LC, Carneiro J, 1991]

Рис. 12-48. Подвздошная кишка. Скопления лимфатических фолликулов в слизистой оболочке образуют пейерову бляшку. Она выступает в просвет кишки и выходит за пределы слизистой оболочки в подслизистую. Эпителий кишки, соприкасающийся с лимфоидной тканью в собственном слое, не содержит бокаловидных клеток, но инфильтрирован многочисленными лимфошитами. Эпителиальные клетки с характерным складчатым рельефом поверхности (M клетки) захватывают Аг в просвете кишки и мигрируют из эпителия крипт в лимфоидную ткань пейеровой бляшки, где Аг передаётся макрофагам, а затем предъявляется Т-лимфоцитам. Лимфоидная ткань пейерооой оляшки тотчас под эпителием представлена Т- и В-лимфоцитами, плазматическими клетками и макрофагами. Для пейеровой бляшки характерны центры размножения с крупными пролиферируюшими В-лимфобластами, отобранными для синтеза $\operatorname{Ig} A$. Участки между центрами размножения заполнены Т-лимфоцитами [из: Кульчиикий $H K$, 1912]
3. Червеобразный отросток (рис. 12-49) имеет такое же строение, как и другие отделы толстого кишечника. Собственный слой слизистой оболочки, а также подслизистая оболочка содержат большое количество лимфоцитов в виде инфильтратов, а также в виде солитарных фолликулов с центрами размножения. Благодаря значительному развитию лимфоидных образований, слизистая и подслизистая оболочки утолщены, в связи с чем просвет отростка сужен.
3. Железы пищеварительной системы

1. Околоушная слюнная железа (рис. 12-50). Под малым увеличением мнкроскопа в поле зрения видны интенсивно окрашенные дольки железы, состоящие из концевых

Рис. 12-49. Червеобразный отросток. Слизистая оболочка заполнена лимфатическими фолликулами, которые могут присутствовать и в подслизистой оболочке. Эпителий слизистой оболочки содержит каёмчатые и бокаловидные клетки, многочисленные энтероэндокринные клетки на дне крипт и редкие клетки Па́нета. Мышечный слой слизистой оболочки и сплошная мышечная оболочка образованы внутренним циркулярным и наружным продольным слоями ГМК. Снаружи отросток покрыт серозной оболочкой [из Maximaw AA, Bloom W, 1934]

Рис. 12-50. Околоушная сдюнная
щелеза - сложная альвеолярная разветвлённая железа с выраженным дольчатым строением. Клетки концевых отделов вырабатывают белковый секрет. Снаружи секреторные отделы окружены миоэпителиальными клетками. Округлые профили небольшого диаметра, выстланные кубическим или плоским эпителием, соответствуют вставочным отделам.
 Они соединяют концевые отделы и исчерченные протоки. Клетки этих протоков в базальной части имеют характерную исчерченность. Междольковые выводные протоки образованы двухслойным и многослойным эпителиями [из Windle WF, 1960]
(секреторных) отделов, между которыми заметны исчерченные протоки (слюнные трубки). В соединительнотканных прослойках видны междольковые выводные протоки с хорошо заметным просветом, здесь же проходят кровеносные сосуды. Концевые отделы железы образованы секреторными клетками конической формы, их ядро находится в середине или ближе к основанию клетки, цитоплазма заполнена мелкими гранулами секрета. У базальной мембраны расположены удлинённые ядра миоэпителиальных клеток. Среди концевых отделов, занимающих основную часть поля зрения, видны исчерченные протоки. Ядра лежат в центральной части клеток, а в базальной части определяется продольная исчерченность, зависящая от расположения митохондрий параллельно физиологической оси клетки. Междольковые выводные протоки расположены в соединительной ткани; эпителий, образующий их стенку, многослойный.
2. Подчелюстная слюнная железа (рис. 12-51). Как и в околоушной железе, на препарате под малым увеличением микроскопа видны дольки, разделённые соединительнотканными перегородками. Дольки неоднородны, что определяется разнообразием клеток (белковых и слизистых), образующих концевые отделы. При большом увеличении микроскопа видно, что концевые отделы имеют удлинённую форму, иногда ветвятся. Так как железа смешанная, то в концевых отделах - наряду со слизистыми клетками находятся и белковые клетки. Слизистые клетки крупные, конической формы, со сплющенным ядром, лежащим у основания клетки. Цитоплазма их светлая и прозрачная. Белковые клетки (более тёмные) окружают слизистые клетки в виде шапочек, или полу-

Рис. 12-51. Подчелюстная слновная железа. Секреторные отделы двух видов: слизистые и белковослизистые. Слизистве отделы образованы крупными светлыми клетками, в смешанных отделах белковые клетки охватывают в виде полулуний слизистые клетки [из Windle WF, 1960]

луний Джануцци. У базальной мембраны расположены миоэпителиальные клетки. Выводные протоки железы имеют такое же строение, как и в околоушной железе.
3. Поджелудочная железа (рис. 12-52). Под малым увеличением микроскопа видны дольки железы, разделённые прослойками соединительной тканн. Дольки состоят из ацинусов - концевых секреторных отделов, напоминающих концевые отделы околоушной железы. В междольковой соединительной ткани видны крупные выводные протоки, выстланные однослойным цилиндрическим эпителием, и большое количество кровеносных сосудов. Среди ацинусов хорошо заметны группы светлых клеток - островки Ла́нгерханса. Под большим увеличением микроскопа видно, что концевые отделы образованы слоем конических клеток, их ядра расположены в средней части клеток. Выше ядра находится зимогенная зона (содержит гранулы секрета), окрашивающаяся значительно светлее гомогенной (базальной) зоны. Как внутридольковые, так и междольковые выводные протоки выстланы однослойным эпителием. Островки Ладнгерханса состоят из эпителиальных клеток, разделённых тонкими прослойками соединительной ткани с большим количеством кровеносных капилляров. Строгая идентификация разных типов эндокринных клеток проводится иммуноцитохимически.
4. Печень (рис. 12-53) состоит из долек. Дольки имеют пяти-шестигранную форму, в центре дольки находится центральная вена. От неё в радиальном направлении идут тяжи гепатоцитов (печёночные пластинки), разделённые широкими кровеносными капиллярами (синусоидами). Гепатоциты часто содержат по два ядра. Цитоплазма их зерниста. В междольковой соединительной ткани видны группы трубочек. Каждая группа состоит из 4 элементов: 1) ветвь печёночной артерии (междольковая артерия), 2) ветвь воротной вены (междольковая вена), 3) междольковый жёлчный проток, 4) лимфатические

Рис. 12-52. Поджелудочнап железа. Экзокринную часть образуют ацинусы, состоящие из полярно дифференцированных секреторных клеток. В центре ацинусов расположены центроацинозные клетки, которыми начннаются выводные протоки. Внутридольковые протоки выстланы кубическим или цилиндрическим эпителием [из Voss $H, 1957$]

сосуды. Эти структуры образуют портальную зону. В соединительной ткани между дольками можно видеть и отдельные вены, расположенные всегда на некотором удалении от портальных зон - ветви печёночных вен.
Портальная зона. Артерия имеет толстую стенку. Вена тонкостенна, просвет её спавшийся. Жёлчный проток выстлан однослойным кубическим эпителием. Лимфатические сосуды находятся в спавшемся состоянии.

Рис. 12-53. Печень. Паренхиму печени образуют тяжи гепатоцитов, между которыми расположены выстланные эндотелиальными клетками синусоиды. Квадратом выделена портальная зона [из Voss H, 1957]

АИTEPATYPA

Кульчкцкий НК, Основы гистологии животных и человека. Харьков, 1912
Мапнскиц ДН Клетка Купфера и система мононуклеарных фагоцитов. Новосибирск: Наука, 1981
Увнес-Моберг К Желудочно-кишечный тракт в процессах роста и размножения. В мире науки, 1989, №9, c.46-52

Фалин ЛИ Гистология и эмбриология полости рта и зубов. М.: Медгиз, 1963
Banting FG, Best CH J. Lab. Clin. Med., 1921-22 7: 251
Machen TE, Paradiso AM Regulation of intracellular pH in the stomach. Ann. Rev. Physiol., 1987, 49: 19-33
McArthur KE, Jensen RT, Gardner JD Treatment of acidic-peptic diseases by inhibition of gastric $\mathrm{H}^{+}, \mathrm{K}^{+}$-
ATPase. Ann. Rev. Med., 1986, 37: 97-105
Sternini C Structural and chemical organization of the myenteric plexus. Ann. Rev. Physiol., 1988, 50: 81-93

ВОПРОСЫ

Пояснение．За каждым из перечисленных вопросов или незаконченных утверждений следуют обозначенные буквой ответы или завершения утверждений．Выберите один ответ или завершение утверждения，наиболее соответствующее каждому случаю．

1．Развитие зуба．Цементобласты происходят из：

（A）зубного мешочка
（Б）остеогенных клеток челюсти
（B）зубного сосочка
（Г）зубной пластинки
（Д）эмалевого органа

2．Зуб．Верно всё，KPOME：

（A）одонтобласты расположены на границе пульпы и дентина
（Б）органический матрикс дентина построен из коллагеновых волокон
（B）в дентинных канальцах проходят отростки амелобластов
（Г）эмалевые призмы в основном состоят из кристаллов гидроксиапатита
（Д）между цементом и костной тканью альвеолярных перегородок расположен периодонт

3．Постоянны⿺ٌ̊ зуб．Верно всё，КРОМЕ：

（A）прорезывание постоянных зубов начинается с 6－7 лет
（Б）первым прорезывается большой коренной зуб
（B）эмаль непроницаема для фторидов
（Г）вторичный дентин образуется в течение всей жизни
（Д）чувствительность пульпы зуба контролируется тройничным нервом
4．Пищевод．Верно всё，КРОМЕ：
（A）слизистая оболочка кишечного типа
（Б）в собственном слое слизистой оболочки присутствуют простые трубчатые разветвлённые железы
（В）в подслизистой оболочке расположены сложные альвеолярно－трубчатые железы
（Г）мышечная оболочка в верхней трети пищевода поперечнополосатая
（Д）в подслизистой оболочке и между слоями мышечной оболочки расположены нервные сплетения
5．Слизисто－бикарбонатны⿺夂几．барьер желудка．Верно всё，КРОМЕ：
（А）протектор повреждающего действия соляной кислоты
（Б）защищает от переваривающего действия пепсина
（B）защищает эпителий слизистой от механического повреждения
（Г）активирует переход пепсиногена в пепсин
（Д）разрушается под действием аспирина
6．Секрецию бикарбоната и слизи в желудке усиливают все вещества，КРОМЕ：
（A）глюкагона
（Б）простагландина E
（B）гастрина
（Г）эпидермального фактора роста
（Д）соматостатина
7. В желудке соляная кислота участвует во всех процессах, КРОМЕ:
(A) кислотного гидролиза белков
(Б) облегчения всасывания витамина B_{12}
(B) уничтожения бактерий
(Г) превращения пепсиногена в пепсин
(Д) установления оптимального pH для протеолитического эффекта пепсина
8. Уменьшение секреции соляной кислоты вызовут все перечисленные мероприятня, KPOME:
(A) блокады аденилатциклазы
(Б) новокаиновой блокады блуждающего нерва
(B) блокады рецепторов ацетилхолина
(Г) блокады рецепторов гастрина
(Д) активации $\mathrm{H}^{+}, \mathrm{K}^{+} \cdot$ АТФазы
9. Секрецию соляной кислоты стимулирует:
(A) соматостатин
(Б) брадикинин
(B) простагландины
(Г) желудочный ингибирующий пептид (GIP)
(Д) гистамин
10. В состав крипт тонкого кишечника входят все клетки, КРОМЕ:
(А) клеток Пáнета
(Б) камбиальных
(B) Догеля
(Г) бокаловидных
(Д) энтероэндокринных
11. Тонкий кишечник. Всё верно, КРОМЕ:
(A) рельеф слизистой формируют циркулярные складки, ворсинки, крипты
(Б) продолжительность жизни эпителия слизистой оболочки - 60 суток
(B) регенерацию эпителия слизистой оболочки стимулирует эпидермальный фактор роста
(Г) эпидермальный фактор роста секретируют дуоденальные железы
(Д) в собственном слое слизистой оболочки присутствуют лимфоидные клетки
12. Двенадцатиперстная кишка. Верно всё, КРОМЕ:
(A) дуоденальные железы выделяют слизь и бикарбонат
(Б) стимуляция симпатической нервной системы усиливает моторику кишки
(B) хиломикроны поступают в лимфатические капилляры
(Г) в гликокаликсе каёмчатых клеток присутствует секреторный IgA
(Д) энтероэндокринные клетки вырабатывают холецистокинин

13. Расслабление ГМК кишечника вызывает:

(A) гистамин
(Б) гастрин
(B) холецистокинин
(Г) адреналин
(Д) серотонин

14. Толстый кишечник. Всё верно, КРОМЕ:

(A) в криптах находятся каёмчатые, энтероэндокринные и единичные бокаловидные клетки
(Б) червеобразный отросток содержит многочисленные лимфатические фолликулы
(B) дефект миграции клеток нервного гребня сопровождается нарушением иннервации дистального отдела
(Г) содержит бактерии, вырабатывающие витамины B_{12} и К
(Д) поверхность анального канала покрыта многослойным плоским неороговевающим эпителием
15. Печень. Верно всё, КРОМЕ:
(A) жёлчные капилляры находятся внутри тяжей гепатоцитов
(Б) гепатоциты окружены базальной мембраной
(B) кровь из синусоидов поступает в центральные вены
(Г) гепатоциты омываются кровью
(Д) клетки фон Купффера - фагоциты
16. Кровоток в печени. Выберите правильное утверждение:
(A) кровь из междольковых вен и артерий поступает в синусоиды
(Б) кровь из синусоидов поступает в междольковую вену
(B) ГМК центральных вен содержат адренорецепторы
(Г) кровь из печени оттекает по воротной вене
(Д) через ворота печени входят печёночные вены
17. Пространство Ди́ссе ограничивают:
(A) гепатоциты и клетки Ито
(Б) эндотелиальные клетки и гепатоциты
(B) соседние тяжи гепатоцитов
(Г) соседние гепатоциты
(Д) эндотелиальные клетки и клетки фон Купффера
18. Клетки фон Купффера. Верно всё, КРОМЕ:
(A) выделяют соли жёлчных кислот
(Б) расположены в синусоидах
(B) фагоцитируют эритроциты
(Г) происходят из моноцитов
(Д) накапливают железо

Пояснение. Каждый из нижеприведённых и пронумерованных вопросов 20-24 содержит четыре варианта ответов, из которых правильными могут быть один или сразу несколько. Выберите:
А - если правильны ответы 1,2 и 3
Б - если правильны ответы 1 и 3
В - если правильны ответы 2 и 4
Г - если правилен ответ 4
Д - если правильны ответы $1,2,3$ и 4
19. Клеточные элементы постоянного зуба:
(1) амелобласты
(2) одонтобласты
(3) остеоциты
(4) цементоциты

20. Островки Лаінгерханса:

(1) адреналин подавляет секрецию инсулина
(2) гибель β-клеток - причина инсулин-зависимого сахарного диабета
(3) глюкагон повышает содержание глюкозы в крови
(4) островковые клетки окружены кровеносными капиллярами фенестрированного тила
21. Железы желудка:
(1) вырабатывают желудочный сок
(2) главные клетки синтезируют пепсин
(3) ацетилхолин стимулирует секрецию экзокринных клеток
(4) гистамин подавляет секрецию пепсиногена и соляной кислоты
22. Витамин B_{12} :
(1) антианемический фактор
(2) в желудке связывается с внутренним фактором
(3) всасывается в тонком кишечнике
(4) откладывается в печени
23. Поджелудочная железа выделяет в просвет двенадцатиперстной кишки:
(1) эластазу
(2) глюкагон
(3) трипсиноген
(4) панкреатический полипептид
24. Печень участвует в синтезе:
(1) альбуминов
(2) глюкокортикоидов
(3) фибриногена
(4) Ig

ОТВЕТЫ И ПОЯСНЕНИЯ

1. Правильный ответ - A

В развитии зуба участвуют зубная пластинка, эмалевый орган, зубной сосочек, зубной мешочек. На 7-й неделе эмбриогенеза в результате утолщения эпителия верхней и нижней челюстей появляется зубная пластинка. Эпителиальные клетки зубной пластинки врастают в подлежащую мезенхиму и образуют эмалевый орган, соответствующий положению зуба. Клетки внутреннего эмалевого эпителия дифференцируются в энамелобласты, формирующие эмаль. Зубной сосочек расположен внутри бокаловидного эмалевого органа в виде скопления мезенхимных клеток (из них происходит пульпа зуба). Периферические клетки зубного сосочка дифференцируются в одонтобласты, образующие дентин. Зубной мешочек сформирован из мезенхимных клеток, окружающих зачаток зуба. Клетки, контактирующие с дентином корня, дифференцируются в цементобласты и откладывают цемент. Наружные клетки зубного мешочка формируют периодонт.

2. Правильный ответ - B

Периферический слой пульпы содержит одонтобласты - высокие цилиндрические клетки с отростком, идущим от апикального полюса клетки к границе между дентином и эмалью. Одонтобласты секретируют коллаген, гликозаминогликаны (хондроитинсульфат) и липиды, входящие в состав органического матрикса дентина. По мере минерализации предентина (необызвествлённый матрикс) отростки одонтобластов оказываются замурованными в дентинных канальцах. Энамелобласты участвуют в образовании эмали, в зрелой эмали они отсутствуют. Эмаль - самая твердая ткань организма. Объём неорганических веществ в эмали - до 90%. Эмалевые призмы в основном состоят из кристаллов гидроксиапатита. Периодонтальная связка (периодонт) состоит из пучков коллагеновых волокон, соединяющих цемент корня зуба и костную ткань альвеолярных перегородок.

3. Правильный ответ - В

Прорезывание постоянных зубов начинается в возрасте 6-7 лет. Первым прорезывается большой коренной зуб (первый моляр), затем центральные и боковые резцы. В 9-14 лет прорезываются премоляры, клыки и второй моляр. Зуб мудрости прорезывается в 18-25 лет. Микропоры в эмалевых призмах и поры между ними обеспечивают проницаемость эмали. Вода, ионы, витамины, моносахара, аминокислоты могут медленно диффундировать в веществе змали. Фториды (питьевой воды, зубной пасты) включаются в кристаллы эмалевых призм, увеличивая сопротивление эмали к кариесу. Вторичный дентин (дентин раздражения) образуется в течение всей жизни. При стирании жевательных поверхностей, повреждении дентина между предентином и первичным дентином откладывается дентин раздражения. Пульпа зуба иннервирована чувствительными волокнами тройничного нерва. Через канал в корне зуба в пульпу входят кровеносные сосуды и нервные волокна. В пульпе зуба нервные волокна заканчиваются на кровеносных сосудах и формируют сплетение вблизи внутренней поверхности дентина. Тонкие безмиелиновые волокна проникают на некоторое расстояние в дентинные канальцы.

4. Правильный ответ - A

В стенке пищевода различают слизистую, подслизистую, мышечную и наружную оболочки. Пищевод выстилает слизистая оболочка кожного типа, покрытая многослойным плоским неороговевающим эпителием. В верней части пищевода на уровне перстневидного хряща и пятого кольца трахеи и при переходе пищевода в желудок в собственном слое слизистой оболочки присутствуют простые трубчатые разветвлённые железы, сходные с кардиальными железами желудка. В подслизистой оболочке расположены сложные трубчато-альвеолярные слизистые железы. Мышечная оболочка в верхней трети пищевода представлена поперечнополосатыми мышечными волокнами, которые постепенно замещаются гладкомышечной тканью, формирующей внутренний циркулярный и наружный продольный слои. Нервные сплетения в подслизистой оболочке и между слоями мышечной оболочки контролируют функции слизистой и мышечной оболочек.

5．Правильный ответ－Г

Слизистую оболочку желудка покрывает однослойный железистый эпителий，секретирующий слизь и бикарбонат．Слизисто－бикарбонатный барьер защищает эпителий от действия соляной кислоты， переваривающих эффектов пепсина и в какой－то мере от механического повреждения．При небла－ гоприятных условиях барьер разрушается в течение нескольких минут，происходят гибель эпте－ лиальных клеток，отёк и кровоизлияния в собственном слое слизистой оболочки．Аспирин，этанол， соли жёлчных кислот，Helicobacter pylori－стандартные факторы，разрушающие барьер．Переход пепсиногена в пепсин активирует соляная кислота．

6．Правильный ответ－Д

Секрецию бикарбоната и слизи в желудке усиливают глюкагон，простагландин E ，гастрин，эпидер－ мальный фактор роста．Соматостатин подавляет все процессы в пищеварительном тракте，в т．ч． секрецию бикарбоната и слизи в желудке．

7．Правильный ответ－Б

Витамин B_{12} в желудке соединяется с внутренним фактором и в комплексе с ним транспортируется в тонкий кишечник，где происходит всасывание B_{12} ．В желудке соляная кислота участвует в кис－ лотном гидролизе белков，уничтожает бактерии，переводит неактивный пепсиноген в активный пепсин，устанавливает оптимальный pH для протеолитического действия пепсина．

8．Правильныї ответ－Д

Блокада рецепторов ацетилхолина и гастрина，а также новокаиновая блокада блуждающего нерва и последующее выключение секреции ацетилхолина вызовут снижение выработки соляной кисло－ ты париетальными клетками．Простагландины снижают секрецию HCl ，ингибируя аденилатцикла－ зу，что приводит к уменьшению уравня внутриклеточного цАМФ．Активация $\mathrm{H}^{+}, \mathrm{K}^{+}$－АТФазы в париетальных клетках，наоборот，будет стимулировать их кислотообразующую функцию．
9．Правильный ответ－Д
Стимуляция H_{2}－рецепторов гистамина активирует париетальные клетки．Соматостатин，простага－ ландины，желудочный ингибирующий пептид подавляют секрецию соляной кислоты париетальны－ ми клетками．Брадикинин стимулирует моторику желудка．

10．Правильный ответ－B

Кишечные крипты（трубчатые железы）расположены в собственном слое слизистой оболочки，они открываются в просвет кишечника между ворсинками．Эпителий крипт состоит из каёмчатых， бокаловидных，энтероэндокринных，па́нетовских и камбиальных клеток．На дне крипт находятся камбиальные клетки，из которых постоянно дифференцируются новые клетки эпителия，и клетки Пáнета，секретирующие бактерицидное вещество－лизоцим．В основании крипт также присут－ ствуют энтероэндокринные клетки，вырабатывающие гастрин，глюкагон，секретин，холецистоки－ нин，желудочный ингибирующий пептид，мотилин，соматостатин．В верхней части крипт встреча－ ются каёмчатые и бокаловидные клетки．Клетки До́геля－вегетативные нейроны энтеральной нервной системы，расположенные в подслизистом и межмышечном нервных сплетениях．

11．Правильны⿺夂几 ответ－Б

Циркулярные складки，ворсинки и крипты формируют рельеф слизистой оболочки．Вместе с мик－ роворсинками каёмчатых клеток они обеспечивают увеличение площади всасывания в 600 раз． Скорость обновления каёмчатых клеток высока，время их жизни около трёх суток．За это время они успевают образоваться из камбиальных клеток на дне крипт，переместиться из крипты к вершине ворсинки и погибнуть，слущившись в просвет кишечника．Эндокринные клетки крипт ＊живут до́льше（например，продолжительность жизни синтезирующих соматостатин клеток－до 60 суток）．Регенерацию эпителия слизистой оболочки стимулирует эпидермальный фактор роста из слюнных и дуоденальных желёз．Тонкий кишечник имеет слизистую оболочку кишечного типа－ часть системы иммунной защиты организма．В двенадцатиперстной и тощей кишке находятся солитарные лимфатические фолликулы．В подвздошной кишке фолликулы сливаются и образуют пейерову бляшку．

12. Правильный ответ - Б

В двенадцатиперстной кишке продолжается переваривание пищи, и начинаются процессы всасывания. Бикарбонат, синтезируемый в дуоденальных железах, участвует в нейтрализации кислой реакции содержимого желудка (оптимум действия ферментов поджелудочной железы при $\mathrm{pH}=7-8$). Холецистокинин, вырабатываемый энтероэндокринными клетками в криптах тонкого кишечника, стимулирует секрецию панкреатического сока и выделение жёлчи. Жиры в просвете кишки эмульгируются жёлчными кислотами и расщепляются панкреатическим ферментом липазой на свободные жирные кислоты и глицерин. Образовавшиеся продукты поглощаются каёмчатыми клетками, в гладкой эндоплазматической сети которых происходит синтез триглицеридов, а в комплексе Го́льджи формируются комплексы белков и триглицеридов - хиломикроны. Хиломикроны подвергаются экзоцитозу на боковой поверхности клетки и поступают в лимфатические капилляры. Плазматические клетки в собственном слое слизистой оболочки синтезируют и секретируют IgA, транспортируемый через эпителиальные клетки на их поверхность. Моторику кишечника стимулирует парасимпатическая система (нейромедиатор - ацетилхолин), расслабляет симпатическая система (нейромедиатор - норадреналин).

13. Правильный ответ - Г

ГМК мышечной оболочки имеют множество рецепторных входов, регулирующих их сократительную активность. Одни лиганды вызывают сокращение ГМК, другие - их расслабление. Стимуляция рецепторов адреналина, соматостатина, секретина приводит к расслаблению ГМК. Активация рецепторов холецистокинина, гистамина, гастрина, серотонина вызывает сокращение ГМК.

14. Правильный ответ - \mathbf{A}

Крипты в толстом кишечнике развиты значительно сильнее, чем в тонком. Эпителий крипт толстого кишечника состоит из каёмчатых, энттероэндокринных и множества бокаловидных клеток. Секреция большого количества слизи способствует эвакуации каловых масс. Червеобразный отросток имеет такое же строение, как и другие отделы толстого кишечника. В собственном слое слизистой оболочки, а также в подслизистой оболочке червеобразного отростка присутствуют многочисленные лимфатические фолликулы. Болезнь Хйриспрунга возникает вследствие дефекта миграции клеток нервного гребня, приводящего к нарушению иннервации дистального отдела толстого кишечника. Толстый кишечник содержит бактерии, вырабатывающие витамины B_{12} и К. Поверхность анального канала прямой кишки покрыта многослойным плоским неороговевающим эпителием.

15. Правильнык้ ответ - Б

Паренхима печени образована анастомозирующими тяжами гепатоцитов, тяжи радиально сходятся к центральной вене. Внутри тяжей проходят жёлчные капилляры, не имеющие собственной стенки. Тяжи гепатоцитов разделены синусоидами, по которым смешанная кровь поступает в центральные вены. Поверхность гепатоцитов, обращённая в сторону синусоидов, омывается кровью и не имеет базальной мембраны. Между эндотелиальными клетками синусоидов расположены фагоцитирующие клетки фон Купффера.

16. Правильный ответ - A

Через ворота печени входят v. porta, собирающая кровь от всех непарных органов брюшины (70-80\% получаемой печенью крови), и a. hepatica. Эти сосуды многократно ветвятся и входят в состав портальных зон как междольковые вена и артерия. Венозная и артериальная кровь из междольковых вен и артерий поступает в синусоиды, по которым смешанная кровь направляется в центральную вену. Из печени кровь оттекает по печёночным венам (3-4). Центральные вены не содержат ГМК.

17. Правильный ответ - Б

Пространство Ди́ссе ограничивают эндотелиальные клетки и гепатоциты. Контактирующие поверхности соседних гепатоцитов формируют стенку жёлчного капилляра. Между тяжами гепатоцитов находятся синусоиды, содержащие эндотелиальные клетки и клетки фон Купффера. Клетки Ито (жиронакапливающие) расположены в перисинусоидальном пространстве (пространство Ди́ссе) и тесно смыкаются с эндотелием.

18．Правильный ответ－A

Клетки фон Купффера относят к системе мононуклеарных фагоцитов．Они расположены между эндотелиальными клетками в составе стенки синусоидов．В цитоплазме клетох－множество лизо－ сом，включения железа，пигменты．Клетки фон Купффера участвуют в фагоцитозе стареющих и пов－ реждённых эритроцитов，обмене Hb и жёлчных пигментов．Гепатоциты выделяют жёлчные кислоты．

19．Іравильный ответ－В

Периферический слой пульпы содержит одонтобласты，вырабатывающие дентин．Цемент в нижней части зуба（клеточный цемент）содержит цементоциты．Энамелобласты，участвовавшие в образо－ вании эмали，отсутствуют в прорезавшемся зубе，отсюда невозможность регенерации эмали при повреждении（кариесе）．Остеоциты－клеточные элементы костной ткани．

20．Правильный ответ－Д

Совокупность островков Ла́нгерханса－эндокринная часть поджелудочной железы．Каждый ос－ тровок содержит различные типы эндокринных клеток，окружённых тонкой сетью ретикулиновых волокон и многочисленными кровеносными капиллярами фенестрированного типа．β－Клетки со－ ставляют до 70% островковых клеток．Увеличение содержания глюкозы в крови стимулирует секрецию инсулина β－клетками．Адреналин и норадреналин через α－адренорецепторы подавляют секрецию инсулина．При разрушении $90 \% \beta$－клеток снижение секреции инсулина становится кли－ нически значнмым，развивается инсулин－зависимый сахарный диабет．α－Клетки синтезируют глю－ кагон，который расценивают кащ антагонист инсулина．Глюкагон стимулирует гликогенолиз в гепа－ тоцитах，повышая содержание глюкозы в крови．

21．Правильный ответ－A

Простые трубчатые железы желудка．занимают собственный слой слизистой оболочки и открыва－ ются на дне желудочных ямок．Экзокринные клетки вырабатывают продукты，входящие в состав желудочного сока．Париетальные клетки секретируют соляную кислоту．В главных клетках син－ тезируется пепсиноген，в присутствии соляной кислоты превращающийся в протеолитический фермент－пепсин．Слизистые клетки вырабатывают муцин．Ацетилхолин из двигательных окон－ чаний блуждающего нерва и собственных двигательных нейронов желудка и гистамин из тучных клеток стимулируют выработку желудочного сока экзокринными клетками желёз желудка．

22．Правильныё ответ－Д

Из крови B_{12} транспортируется в органы－мишени（красный костный мозг）и в печень．При недостат－ ке витамина B_{12} развивается B_{12}－дефицитная анемия．Гемопоэз сопровождается активным синтезом ДНК，для чего необходим витамин $\mathrm{B}_{\mathrm{t} 2}$ ．

23．Правильны⿺夂丶 ответ－Б

Поджелудочная железа выделяет в просвет двенадцатиперстной кишки панкреатический сок，со－ держащий ферменты．В их числе－эластаза и трипсиноген．Глюкагон и панкреатический полипеп－ тид вырабатываются в эндокринных клетках островков Ла́нгерханса поджелудочной железы．

24．Правильны⿺𠃊 ответ－Б

Печень синтезирует важнейшие белки плазмы крови（например，альбумины，фибриноген，протромбин）． Глюкокортикоиды образуются в эндокринных клетках пучковой зоны коры надпочечников，а гепатоци－ ты участвуют в их инактивации．Иммуноглобулины синтезируются плазматическими клетками．

[^0]: * Этот устаревший термин несколько анекдотичен: при окраске по Ни́сслю перикарион действительно напоминает шкуру хищной кошки, но скорее леопарда (пятна), чем тигра (по́лосы)

[^1]: * Подробнее см. в Терапия (М.: ГЭОТАР, 1996) и Педиатрия (М.: ГЭОТАР, 1996)

